In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model ...In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model under uncertainties is presented. The optimization goal of virtual topology design is defined as minimizing the maximum value amongp percentiles of the bandwidth demand distribution on all Hght-paths. Correspondingly, we propose a heuristic algorithm called an improved decreasing multi-hop logical topology design algorithm (ID-MLTDA) that involves with a degree of uncertainties to design virtual topology. The proposed algorithm yields better performance than previous algorithms. Additionally, the simplicity and efficiency of the proposed algorithm can be in favor of the feasibility for topology design of large networks.展开更多
基金Supported by the National Natural Science Foundation of China (No.90604002)Program for New Century Excellent Talents in University (No. 05-0807).
文摘In this paper, a novel method is proposed to address the problem of designing virtual topology over wavelength division multiplexing (WDM) networks under bandwidth demand uncertainties. And a bandwidth demand model under uncertainties is presented. The optimization goal of virtual topology design is defined as minimizing the maximum value amongp percentiles of the bandwidth demand distribution on all Hght-paths. Correspondingly, we propose a heuristic algorithm called an improved decreasing multi-hop logical topology design algorithm (ID-MLTDA) that involves with a degree of uncertainties to design virtual topology. The proposed algorithm yields better performance than previous algorithms. Additionally, the simplicity and efficiency of the proposed algorithm can be in favor of the feasibility for topology design of large networks.