In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high dow...In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.展开更多
目前人们对信息传输的需求越来越高,低压电力线载波通信已经成为解决"最后一公里"问题的优选方案,但这种通信方式带宽资源有限且没有建立高效的带宽分配策略。针对低压电力线带宽高效分配问题,提出了一种基于最优平稳模型的...目前人们对信息传输的需求越来越高,低压电力线载波通信已经成为解决"最后一公里"问题的优选方案,但这种通信方式带宽资源有限且没有建立高效的带宽分配策略。针对低压电力线带宽高效分配问题,提出了一种基于最优平稳模型的带宽自适应分配策略(Dynamic Bandwidth Allocation for Power Line Communication,DBA-PLC)。DBA-PLC以通信质量评估值为决策变量,采用最优平稳模型并行训练方法自适应地分配带宽,并利用数据筛除的方式进行算法简化。经过仿真实验,验证了该策略的可行性。得出数据筛除率在20%~30%范围内时,能够在占用资源较少的情况下,得到理想的带宽分配结果。并证明了带宽分配结果在信道变化率低于0.25时具有持续有效性,即在一定时间周期内更新一次带宽分配策略,就能保证通信的高带宽利用率。展开更多
基金supported by National Science Foundation Project of P. R. China (No. 61501026, U1603116)
文摘In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.
文摘目前人们对信息传输的需求越来越高,低压电力线载波通信已经成为解决"最后一公里"问题的优选方案,但这种通信方式带宽资源有限且没有建立高效的带宽分配策略。针对低压电力线带宽高效分配问题,提出了一种基于最优平稳模型的带宽自适应分配策略(Dynamic Bandwidth Allocation for Power Line Communication,DBA-PLC)。DBA-PLC以通信质量评估值为决策变量,采用最优平稳模型并行训练方法自适应地分配带宽,并利用数据筛除的方式进行算法简化。经过仿真实验,验证了该策略的可行性。得出数据筛除率在20%~30%范围内时,能够在占用资源较少的情况下,得到理想的带宽分配结果。并证明了带宽分配结果在信道变化率低于0.25时具有持续有效性,即在一定时间周期内更新一次带宽分配策略,就能保证通信的高带宽利用率。