Electromagnetic bandgap (EBG) materials are periodic structures capable of prohibiting the propagation of electromagnetic waves within a certain band of frequencies. This characteristic of EBG has wide application. ...Electromagnetic bandgap (EBG) materials are periodic structures capable of prohibiting the propagation of electromagnetic waves within a certain band of frequencies. This characteristic of EBG has wide application. The structures to be studied here are mainly planar EBG materials of two dimensions, which are periodic arrays of holes etched in the ground plane of a conventional microstrip line. EBG structures are calculated with finite-difference time-domain (FDTD) method in this paper. Technique of the perfectly matched layer is used for the absorption of electromagnetic waves in FDTD. The FDTD method is programmed with the blend of C++ and Matlab languages, which makes the program both simple and fast computing. A kind of new EBG structure is brought out through a lot of experiments and analyses. A filter with wide stop-band and another filter with two stop-bands are designed.展开更多
Extrusion freeforming can be used for the rapid prototyping of millimeter-wave electromagnetic bandgap (EBG) structures. In this work, an alumina-polymer paste with a relatively high volatility solvent (propanol) was ...Extrusion freeforming can be used for the rapid prototyping of millimeter-wave electromagnetic bandgap (EBG) structures. In this work, an alumina-polymer paste with a relatively high volatility solvent (propanol) was used and the characteristics of the ceramic paste, particularly the rheological features are described. The advantage of high volatility solvent is that the viscosity and elastic modulus of the paste are increased sharply as the solvent evaporates. Thus, the rigidity of the extruded filament is quickly increased as a small amount of solvent evaporates. Finally, by employing this procedure, different EBG structures such as 2-D, 3-D woodpile and aperiodic structures were fabricated and their bandgaps were measured. The experimental results show that extrusion freeforming is a relatively simple and easy method to fabricate these woodpile structures with a bandgap in the 90-110 GHz region.展开更多
文摘Electromagnetic bandgap (EBG) materials are periodic structures capable of prohibiting the propagation of electromagnetic waves within a certain band of frequencies. This characteristic of EBG has wide application. The structures to be studied here are mainly planar EBG materials of two dimensions, which are periodic arrays of holes etched in the ground plane of a conventional microstrip line. EBG structures are calculated with finite-difference time-domain (FDTD) method in this paper. Technique of the perfectly matched layer is used for the absorption of electromagnetic waves in FDTD. The FDTD method is programmed with the blend of C++ and Matlab languages, which makes the program both simple and fast computing. A kind of new EBG structure is brought out through a lot of experiments and analyses. A filter with wide stop-band and another filter with two stop-bands are designed.
基金Supported by the Leverhulme Trust (No. F/07476/V)
文摘Extrusion freeforming can be used for the rapid prototyping of millimeter-wave electromagnetic bandgap (EBG) structures. In this work, an alumina-polymer paste with a relatively high volatility solvent (propanol) was used and the characteristics of the ceramic paste, particularly the rheological features are described. The advantage of high volatility solvent is that the viscosity and elastic modulus of the paste are increased sharply as the solvent evaporates. Thus, the rigidity of the extruded filament is quickly increased as a small amount of solvent evaporates. Finally, by employing this procedure, different EBG structures such as 2-D, 3-D woodpile and aperiodic structures were fabricated and their bandgaps were measured. The experimental results show that extrusion freeforming is a relatively simple and easy method to fabricate these woodpile structures with a bandgap in the 90-110 GHz region.