The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
From the recent experimentally observed conduction band offset and previously reported band gaps,one may deduce that the valence band offset between rutile SnO2 and TiO2 is around 1 eV,with TiO2 having a higher valenc...From the recent experimentally observed conduction band offset and previously reported band gaps,one may deduce that the valence band offset between rutile SnO2 and TiO2 is around 1 eV,with TiO2 having a higher valence band maximum.This implication sharply contradicts the fact that the two compounds have the same rutile structure and the Γ3^+ VBM state is mostly an oxygen p state with a small amount of cation d character,thus one would expect that SnO2 and TiO2 should have small valence band offset.If the valence band offset between SnO2 and TiO2 is indeed small,one may question the correctness of the previously reported band gaps of SnO2 and TiO2.In this paper,using first-principles calculations with different levels of computational methods and functionals within the density functional theory,we reinvestigate the long-standing band gap problem for SnO2.Our analysis suggests that the fundamental band gap of SnO2 should be similar to that of TiO2,i.e.,around 3.0 eV.This value is significantly smaller than the previously reported value of about 3.6 eV,which can be attributed as the optical band gap of this material.Similar to what has been found in In2O3,the discrepancy between the fundamental and optical gaps of SnO2 can be ascribed to the inversion symmetry of its crystal structure and the resultant dipole-forbidden transitions between its band edges.Our results are consistent with most of the optical and electrical measurements of the band gaps and band offset between SnO2 and TiO2,thus provide new understanding of the band structure and optical properties of SnO2.Experimental tests of our predictions are called for.展开更多
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron...Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.展开更多
To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer o...To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer of interface with related to two factors: (i) band offsets and (2) binding energy area density. These two variables were determined by material intrinsic properties and core-shell thickness ratio. We further unraveled the mechanism of non-radiative energy transfer by charge transfer induced dipole at the inter- face, based on a quasi-classical derivation from F6rster type resonant energy transfer (FRET) model. With stable bonding across the interface, the contributions on energy transfer in both radiative and non-radiative energy transfer should also be accounted together in Auzel's energy transfer (ETU) model in core-shell system. Based on the discussion about interface bonding, band offsets, and forma- tion energies, we figured out the significance of interface bonding induced gap states (IBIGS) that played a significant role for influ- encing the charge transfer and radiative type energy transfer. The interface band offsets were a key factor in dominating the non-radiative energy transfer, which was also correlated to core-shell thickness ratio. We found that the energy area density with re- lated to core/shell thickness ratio followed the trend of Boltzman sigmoidal growth function. By the physical trend, this work contrib- uted a reference how the multi-layered core-shell structure was formed starting from the very beginning within minimum size. A route was paved towards a systematic study of the interface to unveil the energy transfer mechanism in core-shell systems.展开更多
The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by therm...The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by thermal evaporation method at temperatures of 30,100,150,and 200 ℃,respectively.By using x-ray photoelectron spectroscopy(XPS),the valence band offsets(VBO) are determined to be-0.28 ±0.1,-0.28 ±0.1,-0.34 ±0.1,and-0.42 ±0.1 eV for the CZTS/In_2S_3heterostructures deposited at 30,100,150,and 200 ℃,respectively,and the corresponding conduction band offsets(CBO)are found to be 0.3 ±0.1,0.41 ±0.1,0.22±0.1,and 0.01 ±0.1 eV,respectively.The XPS study also reveals that interdiffusion of In and Cu occurs at the interface of the heterostructures,which is especially serious at 200 ℃ leading to large amount of interface defects or the formation of CuInS_2 phase at the interface.The CZTS solar cell with the buffer layer In_2S_3 deposited at 150 ℃ shows the best performance due to the proper CBO value at the heterostructure interface and the improved crystal quality of In_2S_3 film induced by the appropriate deposition temperature.The device prepared at 100 ℃presents the poorest performance owing to too high a value of CBO.It is demonstrated that the deposition temperature is a crucial parameter to control the quality of the solar cells.展开更多
通过基于密度泛函理论的第一性原理计算,对光催化水解半导体Ag2Zn Sn S4的改性方案做了理论研究.在与同类化合物的带边位置比较后发现,Cu与Ge共掺杂能够在Ag2Zn Sn S4中实现禁带宽度和带边位置的双重调节,从而使其能带结构优化到光催化...通过基于密度泛函理论的第一性原理计算,对光催化水解半导体Ag2Zn Sn S4的改性方案做了理论研究.在与同类化合物的带边位置比较后发现,Cu与Ge共掺杂能够在Ag2Zn Sn S4中实现禁带宽度和带边位置的双重调节,从而使其能带结构优化到光催化水解最为理想的状态.另外,Cu Ga Se2可与Ag2Zn Sn S4形成type-II型带阶结构,制备它们的异质结同样可用于提升其光催化水解性能.展开更多
Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deter...Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deteriorate the device performance.In this work,an additional buffer layer of In2S3 is introduced to modify the properties of the Zn(O,S)layer as well as the CZTSSe layer via a post-annealing treatment.The carrier concentrations of both the Zn(O,S)and CZTSSe layers are increased,which facilitates the carrier separation and increases the open circuit voltage(VOC).It is also found that ammonia etching treatment can remove the contamination and reduce the interface defects,and there is an increase of the surface roughness of the In2S3 layer,which works as an antireflection layer.Consequently,the efficiency of the CZTSSe solar cells is improved by 24%after the annealing and etching treatments.Simulation and experimental results show that a large band offset of the In2S3 layer and defect energy levels in the Zn(O,S)layer are the main properties limiting the fill factor and efficiency of these CZTSSe devices.This study affords a new perspective for the carrier concentration enhancement of the absorber and buffer layers by In-doping,and it also indicates that In2S3/Zn(O,S)is a promising Cd-free hybrid buffer layer for high-efficiency kesterite solar cells.展开更多
Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfi...Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfide (CdZnS) ternary compound has a higher band gap than other compounds, which leads to a decrease in window absorption loss. In this paper, the band offsets at Cd1-xZnxS/CuzZnSnS4 (CZTS) heterointerface are calculated by the first-principles, density- functional and pseudopotential method. The band offsets at Cdl xZnxS/CZTS heterointerface are tuned by controlling the composition of Zn in Cd1-xZnxS alloy, the calculated valence band offsets are small, which is consistent with the commonanion rule. The favorable heterointerface of type-I with a moderate barrier height (〈 0.3 eV) can be obtained by controlling the composition of Zn in Cdl-xZnxS alloy between 0.25 and 0.375.展开更多
Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption...Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption in the entire visible spectrum which can be well illustrated by the quantum efficiency curve. In this paper, theoretical analysis has been done through device simulation for designing solar cell based on mixed halide perovskite. Various parameters have efficacy on the solar cell efficiency such as defect density, layer thickness, doping concentration, band offsets, etc. The use of copper oxide as the hole transport material has been analyzed. The analysis divulges that due to its mobility of charge carriers, it can be used as an alternative to spiro-OMeTAD. With the help of simulations, reasonable materials have been employed for the optimal design of solar cell based on perovskite material. With the integration of copper oxide into the solar cell structure, the results obtained are competent enough. The simulations have shown that with the use of copper oxide as hole transport material with mixed halide perovskite as absorber, the power conversion efficiency has improved by 6%. The open circuit voltage has shown an increase of 0.09 V, short circuit current density has increased by 2.32 mA/cm2, and improvement in fill factor is 8.75%.展开更多
A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)...A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.展开更多
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
基金support from the Beijing Computational Science Research Center (CSRC)supported by the Science Challenge Project (No.TZ2016003)+1 种基金the National Key Research and Development Program of China (No.2016YFB0700700)the Nature Science Foundation of China (No.11634003,51672023,U1930402 )
文摘From the recent experimentally observed conduction band offset and previously reported band gaps,one may deduce that the valence band offset between rutile SnO2 and TiO2 is around 1 eV,with TiO2 having a higher valence band maximum.This implication sharply contradicts the fact that the two compounds have the same rutile structure and the Γ3^+ VBM state is mostly an oxygen p state with a small amount of cation d character,thus one would expect that SnO2 and TiO2 should have small valence band offset.If the valence band offset between SnO2 and TiO2 is indeed small,one may question the correctness of the previously reported band gaps of SnO2 and TiO2.In this paper,using first-principles calculations with different levels of computational methods and functionals within the density functional theory,we reinvestigate the long-standing band gap problem for SnO2.Our analysis suggests that the fundamental band gap of SnO2 should be similar to that of TiO2,i.e.,around 3.0 eV.This value is significantly smaller than the previously reported value of about 3.6 eV,which can be attributed as the optical band gap of this material.Similar to what has been found in In2O3,the discrepancy between the fundamental and optical gaps of SnO2 can be ascribed to the inversion symmetry of its crystal structure and the resultant dipole-forbidden transitions between its band edges.Our results are consistent with most of the optical and electrical measurements of the band gaps and band offset between SnO2 and TiO2,thus provide new understanding of the band structure and optical properties of SnO2.Experimental tests of our predictions are called for.
基金funding from the European Union H2020 programme under Excellence research,ERC grant MOLEMAT(726360)PARASOL(RTI2018-102292-B-I00)from Spanish ministry of Science and Innovation。
文摘Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO_(2) and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm^(2) and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.
基金Project supported by the National Natural Science Foundation of China(NSFC)(21425101,21321001,21371011,21331001)Ministry of Science and Technology(MOST)of China(2014CB643800)+3 种基金Natural Science Foundation of China(NSFC) for the Youth Scientist grant(11504309)the Initial Start-up Grant Support from the Department General Research Fund(Dept.GRF) from ABCT in the Hong Kong Polytechnic Universitythe Early Career Scheme(ECS) Fund(PolyU 253026/16P) from the Research Grant Council(RGC)in Hong Kongthe High Performance Supercomputer(ATOM Project)in PolyU
文摘To break through the bottle-neck of quantum yield in upconversion (UC) core-shell system, we elucidated that the energy transfer efficiency in core-shell system had an evident contribution from the charge transfer of interface with related to two factors: (i) band offsets and (2) binding energy area density. These two variables were determined by material intrinsic properties and core-shell thickness ratio. We further unraveled the mechanism of non-radiative energy transfer by charge transfer induced dipole at the inter- face, based on a quasi-classical derivation from F6rster type resonant energy transfer (FRET) model. With stable bonding across the interface, the contributions on energy transfer in both radiative and non-radiative energy transfer should also be accounted together in Auzel's energy transfer (ETU) model in core-shell system. Based on the discussion about interface bonding, band offsets, and forma- tion energies, we figured out the significance of interface bonding induced gap states (IBIGS) that played a significant role for influ- encing the charge transfer and radiative type energy transfer. The interface band offsets were a key factor in dominating the non-radiative energy transfer, which was also correlated to core-shell thickness ratio. We found that the energy area density with re- lated to core/shell thickness ratio followed the trend of Boltzman sigmoidal growth function. By the physical trend, this work contrib- uted a reference how the multi-layered core-shell structure was formed starting from the very beginning within minimum size. A route was paved towards a systematic study of the interface to unveil the energy transfer mechanism in core-shell systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574038 and 61674038)the Natural Science Foundation of Fujian Province,China(Grant No.2014J05073)
文摘The effect of the deposition temperature of the buffer layer In_2S_3 on the band alignment of CZTS/In_2S_3 heterostructures and the solar cell performance have been investigated.The In_2S_3 films are prepared by thermal evaporation method at temperatures of 30,100,150,and 200 ℃,respectively.By using x-ray photoelectron spectroscopy(XPS),the valence band offsets(VBO) are determined to be-0.28 ±0.1,-0.28 ±0.1,-0.34 ±0.1,and-0.42 ±0.1 eV for the CZTS/In_2S_3heterostructures deposited at 30,100,150,and 200 ℃,respectively,and the corresponding conduction band offsets(CBO)are found to be 0.3 ±0.1,0.41 ±0.1,0.22±0.1,and 0.01 ±0.1 eV,respectively.The XPS study also reveals that interdiffusion of In and Cu occurs at the interface of the heterostructures,which is especially serious at 200 ℃ leading to large amount of interface defects or the formation of CuInS_2 phase at the interface.The CZTS solar cell with the buffer layer In_2S_3 deposited at 150 ℃ shows the best performance due to the proper CBO value at the heterostructure interface and the improved crystal quality of In_2S_3 film induced by the appropriate deposition temperature.The device prepared at 100 ℃presents the poorest performance owing to too high a value of CBO.It is demonstrated that the deposition temperature is a crucial parameter to control the quality of the solar cells.
文摘通过基于密度泛函理论的第一性原理计算,对光催化水解半导体Ag2Zn Sn S4的改性方案做了理论研究.在与同类化合物的带边位置比较后发现,Cu与Ge共掺杂能够在Ag2Zn Sn S4中实现禁带宽度和带边位置的双重调节,从而使其能带结构优化到光催化水解最为理想的状态.另外,Cu Ga Se2可与Ag2Zn Sn S4形成type-II型带阶结构,制备它们的异质结同样可用于提升其光催化水解性能.
基金the National Key R&D Program of China(2019YFB1503500,2018YFE0203400 and2018YFB1500200)the National Natural Science Foundation of China(U1902218 and 11774187)the 111 Project(B16027)。
文摘Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deteriorate the device performance.In this work,an additional buffer layer of In2S3 is introduced to modify the properties of the Zn(O,S)layer as well as the CZTSSe layer via a post-annealing treatment.The carrier concentrations of both the Zn(O,S)and CZTSSe layers are increased,which facilitates the carrier separation and increases the open circuit voltage(VOC).It is also found that ammonia etching treatment can remove the contamination and reduce the interface defects,and there is an increase of the surface roughness of the In2S3 layer,which works as an antireflection layer.Consequently,the efficiency of the CZTSSe solar cells is improved by 24%after the annealing and etching treatments.Simulation and experimental results show that a large band offset of the In2S3 layer and defect energy levels in the Zn(O,S)layer are the main properties limiting the fill factor and efficiency of these CZTSSe devices.This study affords a new perspective for the carrier concentration enhancement of the absorber and buffer layers by In-doping,and it also indicates that In2S3/Zn(O,S)is a promising Cd-free hybrid buffer layer for high-efficiency kesterite solar cells.
基金Project supported by the Special Funds of the National Natural Science Foundation of China(Grant Nos.11547226 and 11547180)
文摘Cd1-xZnxS/Cu2ZnSnS4 (CZTS)-based thin film solar cells usually use CdS as a buffer layer, but due to its smaller band gap (2.4 eV), CdS film has been replaced with higher band gap materials. The cadmium zinc sulfide (CdZnS) ternary compound has a higher band gap than other compounds, which leads to a decrease in window absorption loss. In this paper, the band offsets at Cd1-xZnxS/CuzZnSnS4 (CZTS) heterointerface are calculated by the first-principles, density- functional and pseudopotential method. The band offsets at Cdl xZnxS/CZTS heterointerface are tuned by controlling the composition of Zn in Cd1-xZnxS alloy, the calculated valence band offsets are small, which is consistent with the commonanion rule. The favorable heterointerface of type-I with a moderate barrier height (〈 0.3 eV) can be obtained by controlling the composition of Zn in Cdl-xZnxS alloy between 0.25 and 0.375.
文摘Solar cells based on perovskites have emerged as a transpiring technology in the field of photovoltaic. These cells exhibit high power conversion efficiency. The perovskite material is observed to have good absorption in the entire visible spectrum which can be well illustrated by the quantum efficiency curve. In this paper, theoretical analysis has been done through device simulation for designing solar cell based on mixed halide perovskite. Various parameters have efficacy on the solar cell efficiency such as defect density, layer thickness, doping concentration, band offsets, etc. The use of copper oxide as the hole transport material has been analyzed. The analysis divulges that due to its mobility of charge carriers, it can be used as an alternative to spiro-OMeTAD. With the help of simulations, reasonable materials have been employed for the optimal design of solar cell based on perovskite material. With the integration of copper oxide into the solar cell structure, the results obtained are competent enough. The simulations have shown that with the use of copper oxide as hole transport material with mixed halide perovskite as absorber, the power conversion efficiency has improved by 6%. The open circuit voltage has shown an increase of 0.09 V, short circuit current density has increased by 2.32 mA/cm2, and improvement in fill factor is 8.75%.
基金supported by the National Natural Science Foundation of China(Grant No.11404302)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD1-2017-9)
文摘A series of Zn_(1-x)Cd_xO thin films have been fabricated on sapphire by pulsed-laser deposition(PLD), successfully. To investigate the effect of Cd concentration on structural and optical properties of Zn_(1-x)Cd_xO films, x-ray diffraction(XRD),ultraviolet-visible spectroscopy(UV-vis), and x-ray photoelectron spectroscopy(XPS) are employed to characterize the films in detail. The XRD pattern indicates that the Zn_(1-x)Cd_xO thin films have high single-orientation of the c axis. The energy bandgap values of ZnCdO thin films decrease from 3.26 eV to 2.98 eV with the increasing Cd concentration(x)according to the(αhν)~2–hν curve. Furthermore, the band offsets of Zn_(1-x)Cd_xO/ZnO heterojunctions are determinated by XPS, indicating that a type-I alignment takes place at the interface and the value of band offset could be tuned by adjusting the Cd concentration.