当前的采能技术已经能够让传感器节点自动从环境中获得适量的能量补给,针对现有自供能无线传感器网络分簇路由算法中未考虑位于不同地理区域的节点所获补给能量大小的不同,而导致能量补给少区域的簇头数过少、簇规模过大,全网能耗不均...当前的采能技术已经能够让传感器节点自动从环境中获得适量的能量补给,针对现有自供能无线传感器网络分簇路由算法中未考虑位于不同地理区域的节点所获补给能量大小的不同,而导致能量补给少区域的簇头数过少、簇规模过大,全网能耗不均衡等问题,提出了一种能耗均衡的自供能无线传感器网络分簇路由算法-EBCS(Energy Balanced Clustering with Self-Energized),该算法结合实际能量补给场景对簇头选举机制进行了改进,并采用了一种自适应式簇间通信机制,充分保存与利用补给能量。理论和仿真实验表明:EBCS算法能够较好维持预设的簇头比例,在网络平均剩余能量、当前可用节点数量等性能方面优于另外两种现有算法。展开更多
聚类是一种重要数据分析技术,在众多领域中得到广泛地应用.然而,由于数据分布的内在特点,传统的聚类算法并不能保证聚类结果具有平衡性,这与很多现实的需求不一致.本文提出了一种基于K-Means的平衡约束聚类算法,该算法对K-Means算法每...聚类是一种重要数据分析技术,在众多领域中得到广泛地应用.然而,由于数据分布的内在特点,传统的聚类算法并不能保证聚类结果具有平衡性,这与很多现实的需求不一致.本文提出了一种基于K-Means的平衡约束聚类算法,该算法对K-Means算法每次迭代中数据点的分配策略进行修改,达到对每个簇可包含的数据点数目上限进行约束的目的.同时,算法支持用户自定义簇可包含的数据点数目上限,满足不同的平衡约束聚类需求.另外,本算法参数少,只需设置目标簇数目及其可包含的数据点数目上限,时间复杂度低,具有简单、快速的特点.在6个UCI(University of California Irvine)真实数据集上进行的实验结果表明,文中提出的平衡约束聚类算法相比其他平衡约束聚类算法具有更佳的聚类效果和时间性能.展开更多
Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power facto...Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.展开更多
Underwater Wireless Sensor Networks(UWSNs)are widely used in many fields,such as regular marine monitoring and disaster warning.However,UWSNs are still subject to various limitations and challenges:ocean interferences...Underwater Wireless Sensor Networks(UWSNs)are widely used in many fields,such as regular marine monitoring and disaster warning.However,UWSNs are still subject to various limitations and challenges:ocean interferences and noises are high,bandwidths are narrow,and propagation delays are high.Sensor batteries have limited energy and are difficult to be replaced or recharged.Accordingly,the design of routing protocols is one of the solutions to these problems.Aiming at reducing and balancing network energy consumption and effectively extending the life cycle of UWSNs,this paper proposes a Hierarchical Adaptive Energy-efficient Clustering Routing(HAECR)strategy.First,this strategy divides hierarchical regions based on the depth of the sensor node in a three-dimensional(3D)space.Second,sensor nodes form different competition radii based on their own relevant attributes and remaining energy.Nodes in the same layer compete freely to form clusters of different sizes.Finally,the transmission path between clusters is determined according to comprehensive factors,such as link quality,and then the optimal route is planned.The simulation experiment is conducted in the monitoring range of the 3D space.The simulation results prove that the HAECR clustering strategy is superior to LEACH and UCUBB in terms of balancing and reducing energy consumption,extending the network lifetime,and increasing the number of data transmissions.展开更多
Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy ...Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.展开更多
文摘当前的采能技术已经能够让传感器节点自动从环境中获得适量的能量补给,针对现有自供能无线传感器网络分簇路由算法中未考虑位于不同地理区域的节点所获补给能量大小的不同,而导致能量补给少区域的簇头数过少、簇规模过大,全网能耗不均衡等问题,提出了一种能耗均衡的自供能无线传感器网络分簇路由算法-EBCS(Energy Balanced Clustering with Self-Energized),该算法结合实际能量补给场景对簇头选举机制进行了改进,并采用了一种自适应式簇间通信机制,充分保存与利用补给能量。理论和仿真实验表明:EBCS算法能够较好维持预设的簇头比例,在网络平均剩余能量、当前可用节点数量等性能方面优于另外两种现有算法。
文摘聚类是一种重要数据分析技术,在众多领域中得到广泛地应用.然而,由于数据分布的内在特点,传统的聚类算法并不能保证聚类结果具有平衡性,这与很多现实的需求不一致.本文提出了一种基于K-Means的平衡约束聚类算法,该算法对K-Means算法每次迭代中数据点的分配策略进行修改,达到对每个簇可包含的数据点数目上限进行约束的目的.同时,算法支持用户自定义簇可包含的数据点数目上限,满足不同的平衡约束聚类需求.另外,本算法参数少,只需设置目标簇数目及其可包含的数据点数目上限,时间复杂度低,具有简单、快速的特点.在6个UCI(University of California Irvine)真实数据集上进行的实验结果表明,文中提出的平衡约束聚类算法相比其他平衡约束聚类算法具有更佳的聚类效果和时间性能.
基金supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(Grant Number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Wireless Sensor Network(WSN)technology is the real-time applica-tion that is growing rapidly as the result of smart environments.Battery power is one of the most significant resources in WSN.For enhancing a power factor,the clustering techniques are used.During the forward of data in WSN,more power is consumed.In the existing system,it works with Load Balanced Cluster-ing Method(LBCM)and provides the lifespan of the network with scalability and reliability.In the existing system,it does not deal with end-to-end delay and deliv-ery of packets.For overcoming these issues in WSN,the proposed Genetic Algo-rithm based on Chicken Swarm Optimization(GA-CSO)with Load Balanced Clustering Method(LBCM)is used.Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function.Chicken Swarm Optimization(CSO)helps to solve the complex opti-mization problems.Also,it consists of chickens,hens,and rooster.It divides the chicken into clusters.Load Balanced Clustering Method(LBCM)maintains the energy during communication among the sensor nodes and also it balances the load in the gateways.The proposed GA-CSO with LBCM improves the life-span of the network.Moreover,it minimizes the energy consumption and also bal-ances the load over the network.The proposed method outperforms by using the following metrics such as energy efficiency,ratio of packet delivery,throughput of the network,lifetime of the sensor nodes.Therefore,the evaluation result shows the energy efficiency that has achieved 83.56%and the delivery ratio of the packet has reached 99.12%.Also,it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms.
文摘Underwater Wireless Sensor Networks(UWSNs)are widely used in many fields,such as regular marine monitoring and disaster warning.However,UWSNs are still subject to various limitations and challenges:ocean interferences and noises are high,bandwidths are narrow,and propagation delays are high.Sensor batteries have limited energy and are difficult to be replaced or recharged.Accordingly,the design of routing protocols is one of the solutions to these problems.Aiming at reducing and balancing network energy consumption and effectively extending the life cycle of UWSNs,this paper proposes a Hierarchical Adaptive Energy-efficient Clustering Routing(HAECR)strategy.First,this strategy divides hierarchical regions based on the depth of the sensor node in a three-dimensional(3D)space.Second,sensor nodes form different competition radii based on their own relevant attributes and remaining energy.Nodes in the same layer compete freely to form clusters of different sizes.Finally,the transmission path between clusters is determined according to comprehensive factors,such as link quality,and then the optimal route is planned.The simulation experiment is conducted in the monitoring range of the 3D space.The simulation results prove that the HAECR clustering strategy is superior to LEACH and UCUBB in terms of balancing and reducing energy consumption,extending the network lifetime,and increasing the number of data transmissions.
文摘Sensors are considered as important elements of electronic devices.In many applications and service,Wireless Sensor Networks(WSNs)are involved in significant data sharing that are delivered to the sink node in energy efficient man-ner using multi-hop communications.But,the major challenge in WSN is the nodes are having limited battery resources,it is important to monitor the consumption rate of energy is very much needed.However,reducing energy con-sumption can increase the network lifetime in effective manner.For that,clustering methods are widely used for optimizing the rate of energy consumption among the sensor nodes.In that concern,this paper involves in deriving a novel model called Improved Load-Balanced Clustering for Energy-Aware Routing(ILBC-EAR),which mainly concentrates on optimal energy utilization with load-balanced process among cluster heads and member nodes.For providing equal rate of energy consumption among nodes,the dimensions of framed clusters are measured.Moreover,the model develops a Finest Routing Scheme based on Load-Balanced Clustering to transmit the sensed information to the sink or base station.The evaluation results depict that the derived energy aware model attains higher rate of life time than other works and also achieves balanced energy rate among head node.Additionally,the model also provides higher throughput and minimal delay in delivering data packets.