Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature ...Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.展开更多
文摘Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM.