The characteristics of surface O_3 on clear days at Waliguan Observatory,Lin'an regional station and Longfengshan regional station in China were analyzed in this paper.The three stations belong to Global Atmospher...The characteristics of surface O_3 on clear days at Waliguan Observatory,Lin'an regional station and Longfengshan regional station in China were analyzed in this paper.The three stations belong to Global Atmospheric Watch(GAW)of WMO.There was obvious daily variation on clear days at Lin'an.with maximum(42.9 ppb)and minimum(20.3 ppb)of daily range appearing in spring and summer.respectively.The daily variation was more regular at Lonfengshan than at Lin'an.The maximum(about 27 ppb)appeared in autumn at Longfengshan.There was no obvious daily variation and also daily range was smaller in other seasons except weaker daily variation in summer at Waliguan.But the surface O_3 concentration(SOC)in summer was higher than that in winter at Waliguan.The SOC on clear days of summer at Waliguan was over 20 ppb higher than at Longfengshan and Lin'an.The global radiation and NO_x concentration were the main factors which control the SOC on clear days at Longfengshan and Lin'an.and played important role in different seasons and areas.The transportation of air flow around the area of Qinghai-Xizang(Tibet)Plateau was the main cause for high SOC and weak daily variation in summer at Waliguan.The similar effect of transportation was obtained at the Mauna Loa Observatory.The distribution characteristics of SOC increasing with height in the troposphere determined the difference of SOC between East China and West China.展开更多
利用中国第一代全球大气/陆面再分析产品(China’s first generation global atmospheric/land surface reanalysis product,简称CRA),结合地面自动站观测、中国气象局陆面数据同化系统的能见度格点数据、葵花8号卫星资料,分析了2021年1...利用中国第一代全球大气/陆面再分析产品(China’s first generation global atmospheric/land surface reanalysis product,简称CRA),结合地面自动站观测、中国气象局陆面数据同化系统的能见度格点数据、葵花8号卫星资料,分析了2021年1月21—26日琼州海峡一次持续性海雾过程的发展演变、环流形势以及边界层特征,同时分析了两种不同类型雾的形成机制。结果表明:(1)21—22日为低层冷空气扩散形成的锋面雾;23—26日为冷高后部偏东气流型平流雾过程,其中23日23:00至24日14:00大雾发展最强盛,连续12个时次出现特强浓雾,最小能见度达25 m。(2)锋面雾阶段,偏北风影响,风速为1~3 m/s;平流雾阶段,偏东风影响,风速为4~6 m/s。(3)锋面雾阶段,水汽辐合中心位于琼州海峡南岸至海南岛东北部陆地,大雾在陆地开始发展。平流雾阶段,水汽辐合中心位于琼州海峡北岸至海南岛东部海面一带,大雾自海上发展。(4)锋面雾阶段,逆温层在950 hPa左右高度发展,为下冷上暖的平流配置;平流雾阶段,950 hPa以下均为暖平流,逆温层从地面开始发展。大雾过程中锋面雾和平流雾两种不同性质大雾的发展使得大雾长时间维持。展开更多
基金This project is supported by"National Key Basic Reaserch Development Program"G1999045700 of Department of Sciences and Technology Laboratory of Ecologic-Enviroment-Climate Fictitious Reality of Chinese Academy of Meteorological Sciences.
文摘The characteristics of surface O_3 on clear days at Waliguan Observatory,Lin'an regional station and Longfengshan regional station in China were analyzed in this paper.The three stations belong to Global Atmospheric Watch(GAW)of WMO.There was obvious daily variation on clear days at Lin'an.with maximum(42.9 ppb)and minimum(20.3 ppb)of daily range appearing in spring and summer.respectively.The daily variation was more regular at Lonfengshan than at Lin'an.The maximum(about 27 ppb)appeared in autumn at Longfengshan.There was no obvious daily variation and also daily range was smaller in other seasons except weaker daily variation in summer at Waliguan.But the surface O_3 concentration(SOC)in summer was higher than that in winter at Waliguan.The SOC on clear days of summer at Waliguan was over 20 ppb higher than at Longfengshan and Lin'an.The global radiation and NO_x concentration were the main factors which control the SOC on clear days at Longfengshan and Lin'an.and played important role in different seasons and areas.The transportation of air flow around the area of Qinghai-Xizang(Tibet)Plateau was the main cause for high SOC and weak daily variation in summer at Waliguan.The similar effect of transportation was obtained at the Mauna Loa Observatory.The distribution characteristics of SOC increasing with height in the troposphere determined the difference of SOC between East China and West China.