期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于WPT和复合多尺度Bubble熵的轨道车辆轴箱轴承故障诊断
被引量:
1
1
作者
邱小杰
樊麟华
陆正刚
《机电工程技术》
2024年第5期196-202,共7页
为了提高轴承故障识别精度,同时减少甚至消除参数选择的影响,基于轴承振动加速度信号,提出了一种基于复合多尺度Bubble熵的滚动轴承故障诊断方法。基于轨道车辆轴箱轴承故障响应信号具有较强的非线性和非平稳特征,采用小波包变换频域能...
为了提高轴承故障识别精度,同时减少甚至消除参数选择的影响,基于轴承振动加速度信号,提出了一种基于复合多尺度Bubble熵的滚动轴承故障诊断方法。基于轨道车辆轴箱轴承故障响应信号具有较强的非线性和非平稳特征,采用小波包变换频域能量特征重构,对重构信号提取复合多尺度Bubble熵作为故障特征,输入中等高斯支持向量机完成模型训练和故障模式识别。通过基于全尺寸单轮对-轴箱轴承滚动试验台试验的故障轴承数据集以及美国凯斯西储大学公用轴承数据集验证了所提方法的有效性。该方法在不经过参数调节过程的情况下可以达到较高的分类精度,在两种轴承数据集中的正常轴承与故障轴承之间的识别率均为100%,其中在公用轴承数据集中4种故障分类中总识别率为99.83%,在单轮对-轴承滚动试验台数据集中总识别率为93.75%,均高于同类轴承故障诊断算法。实验结果表明,该方法能够有效地提取轴承故障特征,为轨道车辆轴箱轴承状态监测与故障诊断提供了新的解决方案。
展开更多
关键词
轨道车辆轴箱轴承
小波包变换
复合多尺度Bubble熵
MG-SVM
故障诊断
下载PDF
职称材料
题名
基于WPT和复合多尺度Bubble熵的轨道车辆轴箱轴承故障诊断
被引量:
1
1
作者
邱小杰
樊麟华
陆正刚
机构
同济大学铁道与城市轨道交通研究院
出处
《机电工程技术》
2024年第5期196-202,共7页
文摘
为了提高轴承故障识别精度,同时减少甚至消除参数选择的影响,基于轴承振动加速度信号,提出了一种基于复合多尺度Bubble熵的滚动轴承故障诊断方法。基于轨道车辆轴箱轴承故障响应信号具有较强的非线性和非平稳特征,采用小波包变换频域能量特征重构,对重构信号提取复合多尺度Bubble熵作为故障特征,输入中等高斯支持向量机完成模型训练和故障模式识别。通过基于全尺寸单轮对-轴箱轴承滚动试验台试验的故障轴承数据集以及美国凯斯西储大学公用轴承数据集验证了所提方法的有效性。该方法在不经过参数调节过程的情况下可以达到较高的分类精度,在两种轴承数据集中的正常轴承与故障轴承之间的识别率均为100%,其中在公用轴承数据集中4种故障分类中总识别率为99.83%,在单轮对-轴承滚动试验台数据集中总识别率为93.75%,均高于同类轴承故障诊断算法。实验结果表明,该方法能够有效地提取轴承故障特征,为轨道车辆轴箱轴承状态监测与故障诊断提供了新的解决方案。
关键词
轨道车辆轴箱轴承
小波包变换
复合多尺度Bubble熵
MG-SVM
故障诊断
Keywords
axle
-
box
bearing
of
rail
vehicle
wavelet
packet
transform
composite
multi-scale
bubble
entropy
MG-SVM
fault
diagnosis
分类号
TH133.3 [机械工程—机械制造及自动化]
U260.3 [机械工程—车辆工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于WPT和复合多尺度Bubble熵的轨道车辆轴箱轴承故障诊断
邱小杰
樊麟华
陆正刚
《机电工程技术》
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部