To improve polishing quality and cope with the shortage of skilled workers for aluminum wheel-hub surface polishing, an automatic surface polishing system with hierarchical control based on the teaching-playback metho...To improve polishing quality and cope with the shortage of skilled workers for aluminum wheel-hub surface polishing, an automatic surface polishing system with hierarchical control based on the teaching-playback method was presented. Multi-axis cutter location data (CL data) were generated with the teaching method. First, a helical tool path and a flexible polishing tool were adopted to achieve high quality and high efficiency; next, the initial irregular data were processed into continuous polishing CL data. The important factor affecting polishing quality, namely the interpolation cycle in the multi-axis CL data was calculated based on a constant removal rate. Results from polishing experiments show that the quality of automatic machine polishing is better and stabler than manual polishing.展开更多
This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to...This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.展开更多
基金Funded by the Science and Technology Department of Zhejiang Province,China (No. 2005D60SA700351)
文摘To improve polishing quality and cope with the shortage of skilled workers for aluminum wheel-hub surface polishing, an automatic surface polishing system with hierarchical control based on the teaching-playback method was presented. Multi-axis cutter location data (CL data) were generated with the teaching method. First, a helical tool path and a flexible polishing tool were adopted to achieve high quality and high efficiency; next, the initial irregular data were processed into continuous polishing CL data. The important factor affecting polishing quality, namely the interpolation cycle in the multi-axis CL data was calculated based on a constant removal rate. Results from polishing experiments show that the quality of automatic machine polishing is better and stabler than manual polishing.
基金Supported by the National Natural Science Foundation of China(51975281,51705183).
文摘This paper presents an optimization method to compute the rotary axes of a 5-axis FDM printer whose A-and C-axes have large deviations relative to the x-and z-directions.The optimization model is designed according to the kinematic model in which a point rotates around a spatial line in the machine coordinate system of the printer.The model considers the A-and C-axes as two spatial lines.It is a two-object optimization model including two aspects.One is that the sum of deviations between the measured and computed points should be small;the other is that the deviations should be uniformly distributed for every measured point.A comparison of the new optimization method with conventional error-compensation methods reveals that the former has higher location accuracy.Using the optimized AC axes,5-axis 3D printing paths are planned for some complex workpieces.Data analysis and printing samples show that the optimized AC axes satisfy 5-axes FDM printing requirements for nozzles with a diameter of 1.0 mm.