This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decou...This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.展开更多
Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.Howe...Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.展开更多
基金Supported by the National Natural Science Foundation of China ( No. 60275032 ) and the Supported bv the High Technology Research and Development Programme of China ( No. 2003AA404220).
文摘This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.
基金Project(61174002)supported by the National Natural Science Foundation of ChinaProject(200897)supported by the Foundation of National Excellent Doctoral Dissertation of PR China+1 种基金Project(NCET-10-0900)supported by the Program for New Century ExcellentTalents in University,ChinaProject(131061)supported by the Fok Ying Tung Education Foundation,China
文摘Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.