MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot...MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.展开更多
The development of plant branching plays a pivotal role in the morphogenesis of plants. It is affected by the genes and also by the environment. Recent studies of plant branching had made great progresses in the devel...The development of plant branching plays a pivotal role in the morphogenesis of plants. It is affected by the genes and also by the environment. Recent studies of plant branching had made great progresses in the development of the branch control of the physiology, biochemistry, functional genomics, comparative genomics and other aspects. Moreover, we got many mutants associated with the branch development from pea, Arabidopsis, petunia, rice, tomato and corn, such as the formation of axillary meristem-related revoluta (rev), pinhead, monoculml (mocl), laterral suppressor (ls), blind/torosa and other mutants. Preliminary study showed that the formation of meristem development was controlled by regulating hormones and transcription factor interaction network, but the development was both conservative and distinctive in different Mycobacterium species展开更多
文摘MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.
基金Supported by the Natural Science Projects of Heilongjiang Province (2303409)
文摘The development of plant branching plays a pivotal role in the morphogenesis of plants. It is affected by the genes and also by the environment. Recent studies of plant branching had made great progresses in the development of the branch control of the physiology, biochemistry, functional genomics, comparative genomics and other aspects. Moreover, we got many mutants associated with the branch development from pea, Arabidopsis, petunia, rice, tomato and corn, such as the formation of axillary meristem-related revoluta (rev), pinhead, monoculml (mocl), laterral suppressor (ls), blind/torosa and other mutants. Preliminary study showed that the formation of meristem development was controlled by regulating hormones and transcription factor interaction network, but the development was both conservative and distinctive in different Mycobacterium species