期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Prediction of urban human mobility using large-scale taxi traces and its applications 被引量:48
1
作者 Xiaolong LI Gang PAN +5 位作者 Zhaohui WU Guande QI Shijian LI Daqing ZHANG Wangsheng ZHANG Zonghui WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2012年第1期111-121,共11页
This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) ... This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of passengers in a hotspot. Evaluation with a large-scale real- world data set of 4 000 taxis' GPS traces over one year shows a prediction error of only 5.8%. We also explore the applica- tion of the pl^di^fioti approach to help drivers find their next passetlgerS, The sinatllation results using historical real-world data demonstrate that, with our guidance, drivers can reduce the time taken and distance travelled, to find their next pas- senger+ by 37.1% and 6.4% respectively, 展开更多
关键词 urban traffic GPS traces HOTSPOTS human mo-bility prediction auto-regressive integrated moving averagearima
原文传递
Long-term system load forecasting based on data-driven linear clustering method 被引量:17
2
作者 Yiyan LI Dong HAN Zheng YAN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第2期306-316,共11页
In this paper, a data-driven linear clustering(DLC) method is proposed to solve the long-term system load forecasting problem caused by load fluctuation in some developed cities. A large substation load dataset with a... In this paper, a data-driven linear clustering(DLC) method is proposed to solve the long-term system load forecasting problem caused by load fluctuation in some developed cities. A large substation load dataset with annual interval is utilized and firstly preprocessed by the proposed linear clustering method to prepare for modelling.Then optimal autoregressive integrated moving average(ARIMA) models are constructed for the sum series of each obtained cluster to forecast their respective future load. Finally, the system load forecasting result is obtained by summing up all the ARIMA forecasts. From error analysis and application results, it is both theoretically and practically proved that the proposed DLC method can reduce random forecasting errors while guaranteeing modelling accuracy, so that a more stable and precise system load forecasting result can be obtained. 展开更多
关键词 Long-term system load forecasting Datadriven LINEAR clustering AUTOREGRESSIVE integrated moving average(arima) Error analysis
原文传递
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
3
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving averagearima
下载PDF
A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction in Mobile Edge Computing 被引量:11
4
作者 Chao Yan Yankun Zhang +2 位作者 Weiyi Zhong Can Zhang Baogui Xin 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期315-324,共10页
In the mobile edge computing environments,Quality of Service(QoS)prediction plays a crucial role in web service recommendation.Because of distinct features of mobile edge computing,i.e.,the mobility of users and incom... In the mobile edge computing environments,Quality of Service(QoS)prediction plays a crucial role in web service recommendation.Because of distinct features of mobile edge computing,i.e.,the mobility of users and incomplete historical QoS data,traditional QoS prediction approaches may obtain less accurate results in the mobile edge computing environments.In this paper,we treat the historical QoS values at different time slots as a temporal sequence of QoS matrices.By incorporating the compressed matrices extracted from QoS matrices through truncated Singular Value Decomposition(SVD)with the classical ARIMA model,we extend the ARIMA model to predict multiple QoS values simultaneously and efficiently.Experimental results show that our proposed approach outperforms the other state-of-the-art approaches in accuracy and efficiency. 展开更多
关键词 edge computing QoS prediction Auto Regressive Integrated Moving average(arima) truncated Singular Value Decomposition(SVD)
原文传递
Development of temporal modeling for prediction of dengue infection in Northeastern Thailand 被引量:7
5
作者 Siriwan Wongkoon Mullica Jaroensutasinee Krisanadej Jaroensutasinee 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2012年第3期249-252,共4页
Objective:To model the monthly number of dengue fever cases in northeastern Thailand using time series analysis.Methods:Autoregressive Integrated Moving Average(ARIMA) models have been developed on the monthly data co... Objective:To model the monthly number of dengue fever cases in northeastern Thailand using time series analysis.Methods:Autoregressive Integrated Moving Average(ARIMA) models have been developed on the monthly data collected from January 1981 to December 2006 and validated using the data from January 2007 to April 2010.Results:The ARIMA(3,1,4) model has been found as the most suitalile model with the least Akaike Information Criterion(AIC) of 14.060 and Mean Absolute Percent Error(MAPE) of 7.000.The model was fiuther validated by the Portmanteau test with no significant autocorrelation between residuals at different lag times.Conclusions: Early warning based on the data in the previous months could assist in improving vector control, community intervention,and personal protection. 展开更多
关键词 DENGUE Time series analysis AUTOREGRESSIVE Integrated Moving average(arima) PREDICTION
下载PDF
A Hybrid Air Quality Prediction Model Based on Empirical Mode Decomposition
6
作者 Yuxuan Cao Difei Zhang +2 位作者 Shaoqi Ding Weiyi Zhong Chao Yan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期99-111,共13页
Air pollution is a severe environmental problem in urban areas.Accurate air quality prediction can help governments and individuals make proper decisions to cope with potential air pollution.As a classic time series f... Air pollution is a severe environmental problem in urban areas.Accurate air quality prediction can help governments and individuals make proper decisions to cope with potential air pollution.As a classic time series forecasting model,the AutoRegressive Integrated Moving Average(ARIMA)has been widely adopted in air quality prediction.However,because of the volatility of air quality and the lack of additional context information,i.e.,the spatial relationships among monitor stations,traditional ARIMA models suffer from unstable prediction performance.Though some deep networks can achieve higher accuracy,a mass of training data,heavy computing,and time cost are required.In this paper,we propose a hybrid model to simultaneously predict seven air pollution indicators from multiple monitoring stations.The proposed model consists of three components:(1)an extended ARIMA to predict matrix series of multiple air quality indicators from several adjacent monitoring stations;(2)the Empirical Mode Decomposition(EMD)to decompose the air quality time series data into multiple smooth sub-series;and(3)the truncated Singular Value Decomposition(SvD)to compress and denoise the expanded matrix.Experimental results on the public dataset show that our proposed model outperforms the state-of-art air quality forecasting models in both accuracy and time cost. 展开更多
关键词 air quality prediction Empirical Mode Decomposition(EMD) Singular Value Decomposition(SVD) AutoRegressive Integrated Moving average(arima)
原文传递
Spatial-temporal Analysis and Prediction of Precipitation Extremes: A Case Study in the Weihe River Basin, China 被引量:4
7
作者 QIU Dexun WU Changxue +2 位作者 MU Xingmin ZHAO Guangju GAO Peng 《Chinese Geographical Science》 SCIE CSCD 2022年第2期358-372,共15页
Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical f... Extreme precipitation events bring considerable risks to the natural ecosystem and human life.Investigating the spatial-temporal characteristics of extreme precipitation and predicting it quantitatively are critical for the flood prevention and water resources planning and management.In this study,daily precipitation data(1957–2019)were collected from 24 meteorological stations in the Weihe River Basin(WRB),Northwest China and its surrounding areas.We first analyzed the spatial-temporal change of precipitation extremes in the WRB based on space-time cube(STC),and then predicted precipitation extremes using long short-term memory(LSTM)network,auto-regressive integrated moving average(ARIMA),and hybrid ensemble empirical mode decomposition(EEMD)-LSTM-ARIMA models.The precipitation extremes increased as the spatial variation from northwest to southeast of the WRB.There were two clusters for each extreme precipitation index,which were distributed in the northwestern and southeastern or northern and southern of the WRB.The precipitation extremes in the WRB present a strong clustering pattern.Spatially,the pattern of only high-high cluster and only low-low cluster were primarily located in lower reaches and upper reaches of the WRB,respectively.Hot spots(25.00%–50.00%)were more than cold spots(4.17%–25.00%)in the WRB.Cold spots were mainly concentrated in the northwestern part,while hot spots were mostly located in the eastern and southern parts.For different extreme precipitation indices,the performances of the different models were different.The accuracy ranking was EEMD-LSTM-ARIMA>LSTM>ARIMA in predicting simple daily intensity index(SDII)and consecutive wet days(CWD),while the accuracy ranking was LSTM>EEMD-LSTM-ARIMA>ARIMA in predicting very wet days(R95 P).The hybrid EEMD-LSTM-ARIMA model proposed was generally superior to single models in the prediction of precipitation extremes. 展开更多
关键词 precipitation extremes space-time cube(STC) ensemble empirical mode decomposition(EEMD) long short-term memory(LSTM) auto-regressive integrated moving average(arima) Weihe River Basin China
下载PDF
Gross errors identification and correction of in-vehicle MEMS gyroscope based on time series analysis 被引量:3
8
作者 陈伟 李旭 张为公 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期170-174,共5页
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte... This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies. 展开更多
关键词 microelectromechanical system (MEMS)gyroscope autoregressive integrated moving averagearima model time series analysis gross errors
下载PDF
Forecasting risk using auto regressive integrated moving average approach: an evidence from S&P BSE Sensex 被引量:2
9
作者 Madhavi Latha Challa Venkataramanaiah Malepati Siva Nageswara Rao Kolusu 《Financial Innovation》 2018年第1期344-360,共17页
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip... The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,an 展开更多
关键词 Akaike Information Criteria(AIC) Bombay Stock Exchange(BSE) Auto Regressive Integrated Moving average(arima) Beta Time series
下载PDF
Novel anomaly detection approach for telecommunication network proactive performance monitoring
10
作者 Yanhua YU Jun WANG +1 位作者 Xiaosu ZHAN Junde SONG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2009年第3期307-312,共6页
The mode of telecommunication network management is changing from“network oriented”to“subscriber oriented”.Aimed at enhancing subscribers’feeling,proactive performance monitoring(PPM)can enable a fast fault corre... The mode of telecommunication network management is changing from“network oriented”to“subscriber oriented”.Aimed at enhancing subscribers’feeling,proactive performance monitoring(PPM)can enable a fast fault correction by detecting anomalies designating performance degradation.In this paper,a novel anomaly detection approach is the proposed taking advantage of time series prediction and the associated confidence interval based on multiplicative autoregressive integrated moving average(ARIMA).Furthermore,under the assumption that the training residual is a white noise process following a normal distribution,the associated confidence interval of prediction can be figured out under any given confidence degree 1–αby constructing random variables satisfying t distribution.Experimental results verify the method’s effectiveness. 展开更多
关键词 proactive performance monitoring(PPM) anomaly detection time series prediction autoregressive integrated moving average(arima) white noise confidence interval
原文传递
结合X12乘法模型和ARIMA模型的月售电量预测方法 被引量:45
11
作者 颜伟 程超 +3 位作者 薛斌 李丹 陈飞 王顺昌 《电力系统及其自动化学报》 CSCD 北大核心 2016年第5期74-80,共7页
月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量... 月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量和随机分量,其中趋势分量用ARIMA模型预测,季节周期分量和随机分量分别用加权法和平均法预测;然后,用乘法模型将上述3个分量的预测值还原为最终的月售电量预测值。该方法可避免直接预测月售电量时不同分量间的相互干扰,提高预测精度;最后用重庆市铜梁区实际数据进行仿真分析。仿真结果表明,相对于ARIMA和季节ARIMA模型对月售电量序列直接建模预测的方法,所提方法具有更高的预测精度。 展开更多
关键词 X12乘法模型 差分自回归移动平均模型 月售电量预测 分解 还原
下载PDF
基于神经网络和ARIMA模型的冷热电短期负荷预测 被引量:32
12
作者 梁荣 王洪涛 +3 位作者 吴奎华 孙伟 付春梅 张晓磊 《电力系统及其自动化学报》 CSCD 北大核心 2020年第3期52-58,共7页
冷热电负荷预测对终端供能系统的规划设计有重要意义,针对冷热电负荷预测方法中存在的变量多、时间开销大等问题,以5种典型建筑的冷热电负荷历史数据为基础,将Elman神经网络、自回归求和滑动平均ARIMA(autoregressive integrated moving... 冷热电负荷预测对终端供能系统的规划设计有重要意义,针对冷热电负荷预测方法中存在的变量多、时间开销大等问题,以5种典型建筑的冷热电负荷历史数据为基础,将Elman神经网络、自回归求和滑动平均ARIMA(autoregressive integrated moving average)模型和小波神经网络用于冷热电短期负荷预测。仿真结果表明:在冬夏典型日的冷热电负荷预测中,小波神经网络的最大平均绝对百分比误差为2.1%,计算速度适中,是较为合适的冷热电负荷预测方法;ARIMA模型的最大平均绝对百分比误差为4.1%,计算速度慢,但调试和确定参数的难度不大;Elman神经网络的最大平均绝对百分比误差为7.4%,但计算速度最快,网络参数少且调节简捷,适用于对预测精度的要求不太高,但需快速响应的场合。 展开更多
关键词 冷热电联供 负荷预测 ELMAN神经网络 自回归求和滑动平均模型 小波神经网络
下载PDF
基于奇异谱分析的我国航空客运量集成预测模型 被引量:27
13
作者 梁小珍 乔晗 +1 位作者 汪寿阳 张珣 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2017年第6期1479-1488,共10页
针对时间序列包含噪声以及单一模型可能存在预测表现不稳定的问题,本文提出了一个基于奇异谱分析(SSA)的集成预测模型,并将其运用于我国年度航空客运量的预测中.首先,采用SSA方法对原始时间序列进行分解和重构,得到一个剔除噪声的时间序... 针对时间序列包含噪声以及单一模型可能存在预测表现不稳定的问题,本文提出了一个基于奇异谱分析(SSA)的集成预测模型,并将其运用于我国年度航空客运量的预测中.首先,采用SSA方法对原始时间序列进行分解和重构,得到一个剔除噪声的时间序列,然后将其作为单整自回归移动平均模型(ARIMA)、支持向量回归模型(SVR)、Holt-Winters方法(HW)等单一模型的输入并进行预测,接着再采用加权平均集成预测方法(WA)将三种单一模型的预测结果进行综合集成.通过与各单一模型、基于经验模态分解方法(EMD)的模型以及简单平均集成预测方法(SA)的预测结果进行对比发现,本文所建模型具有较高的预测精度和较稳定的预测表现.最后,采用本文的模型对我国2014-2016年年度航空客运量进行了预测. 展开更多
关键词 航空客运量 奇异谱分析(SSA) 单整自回归移动平均模型(arima) 支持向量回归模型(SVR) Holt—Winters方法 集成预测
原文传递
中国火电行业多模型碳达峰情景预测 被引量:24
14
作者 张金良 贾凡 《电力建设》 CSCD 北大核心 2022年第5期18-28,共11页
随着2030年碳达峰目标的提出,能源行业中火电行业的碳达峰情况备受瞩目。文章首先根据Kaya恒等式的扩展,分析得到影响碳排放的主要因素:人口、经济、产业结构、能源消费强度以及消费结构;其次,以2000—2018年数据为基础分别建立线性回... 随着2030年碳达峰目标的提出,能源行业中火电行业的碳达峰情况备受瞩目。文章首先根据Kaya恒等式的扩展,分析得到影响碳排放的主要因素:人口、经济、产业结构、能源消费强度以及消费结构;其次,以2000—2018年数据为基础分别建立线性回归、径向基函数(radial basis function,RBF)神经网络、差分自回归移动平均(autoregressive integrated moving average,ARIMA)以及BP神经网络模型,对比得到最优的预测模型;最后,基于最优模型在基准发展、产业优化、技术突破、低碳发展这4种不同发展情景下对2021—2050年碳排放量进行预测,然后在此基础上对碳达峰情况进行分析。结果表明:低碳发展情景的碳达峰时间最早且峰值最低,是中国火电行业实现碳排放达峰的首选发展模式,为推动火电行业尽快实现较低的碳排放峰值提供借鉴。 展开更多
关键词 碳达峰预测 情景分析 线性回归 差分自回归移动平均(arima) 神经网络
原文传递
ARIMA模型在流感样病例预测预警中的应用 被引量:24
15
作者 史继新 张文增 +2 位作者 冀国强 马玉欣 张松建 《首都公共卫生》 2010年第1期12-16,共5页
目的探讨ARIMA模型在流感样病例预测预警方面的应用,建立流感样病例发病预测模型,并证明模型的适用性。方法对北京市顺义区医院、顺义区妇幼老年保健院2家省级流感样病例监测哨点医院报告的2005年9月~2009年3月流感样病例月报告数资料... 目的探讨ARIMA模型在流感样病例预测预警方面的应用,建立流感样病例发病预测模型,并证明模型的适用性。方法对北京市顺义区医院、顺义区妇幼老年保健院2家省级流感样病例监测哨点医院报告的2005年9月~2009年3月流感样病例月报告数资料建立ARIMA模型,2009年4~5月数据验证模型,用Q统计量法对模型适应性进行检验。结果对流感样病例月报告数建立季节模型ARIMA(1,0,0)x(0,1,0)12,统计量Q大于Χ2α(m)证实了该模型的适用性。结论ARIMA模型能够较好应用于流感样病例预测预警,为疫情防控提供科学依据。 展开更多
关键词 流感样病例 arima模型 预测 预警
下载PDF
基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测 被引量:25
16
作者 殷礼胜 唐圣期 +1 位作者 李胜 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2273-2279,共7页
针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIM... 针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIMA模型预测值和灰色关联系数大于0.6的相关性强的前3个时刻的历史数据作为小波神经网络(WNN)的输入,在兼顾历史数据的平稳和非平稳的情况下,进行了模型结构简化。在算法方面,通过遗传粒子群算法对小波神经网络的参数初始值进行最优选取,可使其结果在不易陷入局部最优的条件下加快网络训练收敛速度。实验结果表明,在预测精度方面,该方法的模型明显优于整合移动平均自回归模型和遗传粒子群算法优化小波神经网络,在收敛速度方面,用遗传粒子群算法优化模型明显优于仅用遗传算法优化模型。 展开更多
关键词 短时交通流预测 灰色关联分析法 整合移动平均自回归 遗传粒子群优化小波神经网络
下载PDF
基于时间序列分析的Web Service QoS预测方法 被引量:21
17
作者 华哲邦 李萌 +1 位作者 赵俊峰 谢冰 《计算机科学与探索》 CSCD 2013年第3期218-226,共9页
通过网络提供服务的Web Service的服务质量会随着网络环境、服务器负载等因素的变化而变化,如何更好地帮助用户选择在未来一段时间内符合服务质量需求的Web Service,是目前服务计算领域中需要解决的关键问题之一。针对上述问题,提出了... 通过网络提供服务的Web Service的服务质量会随着网络环境、服务器负载等因素的变化而变化,如何更好地帮助用户选择在未来一段时间内符合服务质量需求的Web Service,是目前服务计算领域中需要解决的关键问题之一。针对上述问题,提出了一种基于时间序列分析的Web Service QoS预测方法,并实现了相应的Web Service QoS自动预测工具。该工具能够根据Web Service的历史QoS数据,有效地预测未来短期内的QoS信息。以17832个Web Service的历史数据为基础,设计了相关实验,并验证了方法的有效性。 展开更多
关键词 WEB SERVICE 服务质量(QoS) 预测 自回归求和移动平均(arima) 时间序列
下载PDF
基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测 被引量:20
18
作者 谷建伟 隋顾磊 +4 位作者 李志涛 刘巍 王依科 张以根 崔文富 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2018年第6期575-581,共7页
影响水驱开发油田产量的因素众多,针对常规产量预测方法无法考虑时序影响因素的非同步性以及滞后性,应用时间序列分析方法,结合卡尔曼滤波器(Kalman filter),建立考虑因素动态关系的产量ARIMA-Kalman滤波器时间序列模型.根据历史产量数... 影响水驱开发油田产量的因素众多,针对常规产量预测方法无法考虑时序影响因素的非同步性以及滞后性,应用时间序列分析方法,结合卡尔曼滤波器(Kalman filter),建立考虑因素动态关系的产量ARIMA-Kalman滤波器时间序列模型.根据历史产量数据建立时间序列中的产量差分自回归积分移动平均(autoregressive integrated moving average,ARIMA)模型;再将ARIMA模型与Kalman滤波器相结合,构建产量预测算法;以实例油田资料开展机器学习和数据挖掘,并采用数据拟合及预测检验评价算法合理性,实现最终产量数据预测.研究结果表明,ARIMA-Kalman滤波器具有高效的时序影响因素的分析能力,能够排除非同步性和滞后性的影响,使识别出的产量时间序列模型具有精准的拟合结果和预测能力.该研究可为油田产量预测提供一种有效方法,为后续的油井开采提供决策和理论依据. 展开更多
关键词 油气田开发工程 时间序列 产量预测 数据挖掘 arima模型 卡尔曼滤波器
下载PDF
高超声速飞行器分解集成轨迹预测算法 被引量:21
19
作者 韩春耀 熊家军 +1 位作者 张凯 兰旭辉 《系统工程与电子技术》 EI CSCD 北大核心 2018年第1期151-158,共8页
针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采... 针对无动力滑翔高超声速飞行器的轨迹预测问题,提出了分解集成轨迹预测模型。依据运动轨迹的周期跳跃特性,运用先集成再分解的轨迹预测思路,首先将运动轨迹序列分解为具有趋势性、周期性和随机性特征的子序列,再针对每项子序列的特征采用相应的子轨迹预测模型,最后将各子轨迹预测模型预测结果的集成作为最终预测值。由于子序列与子轨迹预测模型具有更高的契合度,使得分解集成轨迹预测算法相对于使用单一模型的轨迹预测算法更具优势。仿真实验表明,分解集成轨迹预测算法显著提高了轨迹预测精度。 展开更多
关键词 轨迹预测 无动力滑翔高超声速飞行器 分解集成模型 最小二乘支持向量回归模型 自回归积分滑动平均模型
下载PDF
基于X-12-ARIMA季节分解与年度电量校正的月度电量预测 被引量:17
20
作者 张强 王毅 +1 位作者 李鼎睿 朱文俊 《电力建设》 北大核心 2017年第1期76-83,共8页
月度电量预测是电力计划部门安排运行计划与制定购售电计划的基础。提出一种综合考虑多种经济因素的月度电量预测方法。首先,采用X-12-ARIMA模型对月度电量和多种经济因素进行季节分解,并利用逐步回归分析研究各经济量与用电量的关联关... 月度电量预测是电力计划部门安排运行计划与制定购售电计划的基础。提出一种综合考虑多种经济因素的月度电量预测方法。首先,采用X-12-ARIMA模型对月度电量和多种经济因素进行季节分解,并利用逐步回归分析研究各经济量与用电量的关联关系和回归模型,获得初步预测结果;然后,利用多项式拟合进行年度电量预测,并对已有月度电量预测结果进行调整;最后,采用自回归积分滑动平均模型(autoregressive integrated moving average model,ARIM A)对受气象与节假日因素影响较大的月份进行分季节预测修正,获得精度良好的月度电量预测模型。该文采用广东省2009年3月至2014年4月的经济数据与电量数据对2014年5月至2015年4月的电量数据进行预测。预测结果的平均预测精度为97.78%,验证了预测模型的有效性。 展开更多
关键词 X-12-arima 月度电量 预测 校正 自回归积分滑动平均模型(arima)
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部