This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Gen...This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474066 No.50177009)广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.05103540)
文摘This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.