A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradi...A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradient on steel surface, while the auxiliary TIG arc can change this phenomenon by heating the steel side. The auxiliary TIG improved the wettability of molten metal, resulting in the molten metal spreading fully on upper surfaces, front and back surface of steel, forming a sound brazing joint; the content of Cr and Ni elements in IMCs layer was increased, which can enhance the quality of the layer; and the microstructure of IMCs layer also was improved, increasing the bonding strength with the weld seam. The average tensile strength of the joint obtained with auxiliary TIG arc(146.7 MPa) was higher than that without auxiliary TIG arc(96.7 MPa).展开更多
Recently,natural draft dry cooling system with the main-auxiliary integrated air-cooled heat exchangers in the up and lower layers,has drawn attention to the electric power industry.This research firstly develops two ...Recently,natural draft dry cooling system with the main-auxiliary integrated air-cooled heat exchangers in the up and lower layers,has drawn attention to the electric power industry.This research firstly develops two physical models for the integrated cooling system,namely Case A and Case B.In Case A,the main air-cooled heat exchanger is arranged in the upper layer and the auxiliary air-cooled heat exchanger arranged in the lower layer,while in Case B,the two heat exchanger systems are arranged in the opposite way.And then,directing at the engineering TMCR and TRL 1 working conditions,the unit-local-overall thermo-flow characteristics of Case A and Case B are obtained and compared by numerical simulation.The findings show that,for the auxiliary air-cooled exchanger,Case A has obviously higher cooling performances than Case B,with the difference varying from 5.46%to 7.55%.Whereas,for the main air-cooled exchanger,Case B shows the recovered cooling performances,with the difference changing from 1.15%to 2.99%.Case A is preferably recommended to the engineering application in consideration of more strict cooling demand of the auxiliary cooling system.Conclusively,this research will provide some theoretical guidelines for the design and construction of the main-auxiliary integrated natural draft dry cooling system.展开更多
文摘A new hybrid welding process was successfully used to join aluminum alloy and stainless steel. In the MIG welding-brazing process, the lower thermal conductivity of steel can cause dramatic change of temperature gradient on steel surface, while the auxiliary TIG arc can change this phenomenon by heating the steel side. The auxiliary TIG improved the wettability of molten metal, resulting in the molten metal spreading fully on upper surfaces, front and back surface of steel, forming a sound brazing joint; the content of Cr and Ni elements in IMCs layer was increased, which can enhance the quality of the layer; and the microstructure of IMCs layer also was improved, increasing the bonding strength with the weld seam. The average tensile strength of the joint obtained with auxiliary TIG arc(146.7 MPa) was higher than that without auxiliary TIG arc(96.7 MPa).
基金The financial supports for this research,from the National Natural Science Foundation of China(Grant No52006065)Fundamental Research Funds for Central Universities(2022BJ0273,2023JC001)。
文摘Recently,natural draft dry cooling system with the main-auxiliary integrated air-cooled heat exchangers in the up and lower layers,has drawn attention to the electric power industry.This research firstly develops two physical models for the integrated cooling system,namely Case A and Case B.In Case A,the main air-cooled heat exchanger is arranged in the upper layer and the auxiliary air-cooled heat exchanger arranged in the lower layer,while in Case B,the two heat exchanger systems are arranged in the opposite way.And then,directing at the engineering TMCR and TRL 1 working conditions,the unit-local-overall thermo-flow characteristics of Case A and Case B are obtained and compared by numerical simulation.The findings show that,for the auxiliary air-cooled exchanger,Case A has obviously higher cooling performances than Case B,with the difference varying from 5.46%to 7.55%.Whereas,for the main air-cooled exchanger,Case B shows the recovered cooling performances,with the difference changing from 1.15%to 2.99%.Case A is preferably recommended to the engineering application in consideration of more strict cooling demand of the auxiliary cooling system.Conclusively,this research will provide some theoretical guidelines for the design and construction of the main-auxiliary integrated natural draft dry cooling system.