This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based o...This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based on an augmented six-degree-of-freedom rigid-body flight dynamic model.First,the cost function and constraints are properly selected.The direct transcription approach is then employed to solve the optimal control problem.For a UH-60 helicopter,the optimal solutions with the rigid-body model are compared with those obtained using a two-dimensional point-mass model.It is found that the optimal solutions using the two different models show reasonably good agreement,and furthermore the optimal solutions using the rigid-body model involve the time histories of angular rates and attitudes,lateral velocity and position,as well as pitch controls.Finally the optimal control formulations with different cost functions are proposed for taking account of 1-s time delay and minimum touchdown speed.The calculated control strategies and trajectories are realistic.展开更多
In this study, we use a thin rotating plate to generate propulsion and lift for a paper plate. And the thin plate rotates along the spanwise axis. We numerically determine the influence on aerodynamic characteristics ...In this study, we use a thin rotating plate to generate propulsion and lift for a paper plate. And the thin plate rotates along the spanwise axis. We numerically determine the influence on aerodynamic characteristics with a rotational velocity of the thin plate. The rotational velocity is obtained with spin parameter which is the ratio of the peripheral speed of the plate to the main flow velocity. And the numerical simulations based on the discrete vortex method show that the autorotation mode of the plate in a uniform flow appears naturally when the spin parameter is unity. Vortex formed from the backward-rotating edge is weaker than those generated from the forward-rotating edge of thin plate. The maximum lift generated at S = 0.75 if S < 1. The negative moment becomes negative for the nondimensional rotating speed S ≤ 1.75. The most negative moment appears when S = 1;at that time, autorotation occurs naturally.展开更多
This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the...This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the flow induced rotation. The dimensional analysis proves that the motion in flow induced rotation motion is governed essentially by the dimensionless moment of inertia and Reynolds number. Certain combinations define the stability boundaries between fluttering and autorotation. Fluttering is oscillation of body about a vertical axis and the autorotation is a name given to the case when the body turns continuously about the vertical axis First, the loads and moment coefficients are calculated by experiments and streamline theory for different angles of attack for a fixed fiat plate. Then for dynamic case, a bifurcation diagram is presented based on experiments to classify different motion states of flow induced rotation. Finally, a dynamical model is proposed for stability analysis of flow induced rotation of a flat plate.展开更多
In this study, we focused on the lift generation with a thin rotating plate. The objective of this study is to understand the appropriate shape and the role of vortex for rotating thin plate. We determined the shape o...In this study, we focused on the lift generation with a thin rotating plate. The objective of this study is to understand the appropriate shape and the role of vortex for rotating thin plate. We determined the shape of the plate through free-flight tests of paper strips and investigated the aerodynamic characteristics of the rotating plate with the selected shape. The rectangular plate with an aspect ratio 7 was relevant from moment of inertia and bending stress. An endplate on a wing tip increased the stability on the lateral vortex structure behind the rotating plate. Velocity field measurement by Particle Image Velocimetry (PIV) showed that the lift force was generated twice in a rotating cycle.展开更多
文摘This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based on an augmented six-degree-of-freedom rigid-body flight dynamic model.First,the cost function and constraints are properly selected.The direct transcription approach is then employed to solve the optimal control problem.For a UH-60 helicopter,the optimal solutions with the rigid-body model are compared with those obtained using a two-dimensional point-mass model.It is found that the optimal solutions using the two different models show reasonably good agreement,and furthermore the optimal solutions using the rigid-body model involve the time histories of angular rates and attitudes,lateral velocity and position,as well as pitch controls.Finally the optimal control formulations with different cost functions are proposed for taking account of 1-s time delay and minimum touchdown speed.The calculated control strategies and trajectories are realistic.
文摘In this study, we use a thin rotating plate to generate propulsion and lift for a paper plate. And the thin plate rotates along the spanwise axis. We numerically determine the influence on aerodynamic characteristics with a rotational velocity of the thin plate. The rotational velocity is obtained with spin parameter which is the ratio of the peripheral speed of the plate to the main flow velocity. And the numerical simulations based on the discrete vortex method show that the autorotation mode of the plate in a uniform flow appears naturally when the spin parameter is unity. Vortex formed from the backward-rotating edge is weaker than those generated from the forward-rotating edge of thin plate. The maximum lift generated at S = 0.75 if S < 1. The negative moment becomes negative for the nondimensional rotating speed S ≤ 1.75. The most negative moment appears when S = 1;at that time, autorotation occurs naturally.
文摘This work describes investigations performed on the interaction of uniform current and freely rotating plate about a fixed vertical axis. Fluttering and autorotation are two different motions that may occur during the flow induced rotation. The dimensional analysis proves that the motion in flow induced rotation motion is governed essentially by the dimensionless moment of inertia and Reynolds number. Certain combinations define the stability boundaries between fluttering and autorotation. Fluttering is oscillation of body about a vertical axis and the autorotation is a name given to the case when the body turns continuously about the vertical axis First, the loads and moment coefficients are calculated by experiments and streamline theory for different angles of attack for a fixed fiat plate. Then for dynamic case, a bifurcation diagram is presented based on experiments to classify different motion states of flow induced rotation. Finally, a dynamical model is proposed for stability analysis of flow induced rotation of a flat plate.
文摘In this study, we focused on the lift generation with a thin rotating plate. The objective of this study is to understand the appropriate shape and the role of vortex for rotating thin plate. We determined the shape of the plate through free-flight tests of paper strips and investigated the aerodynamic characteristics of the rotating plate with the selected shape. The rectangular plate with an aspect ratio 7 was relevant from moment of inertia and bending stress. An endplate on a wing tip increased the stability on the lateral vortex structure behind the rotating plate. Velocity field measurement by Particle Image Velocimetry (PIV) showed that the lift force was generated twice in a rotating cycle.