期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
ARIMA模型在农产品价格预测中的应用 被引量:70
1
作者 刘峰 王儒敬 李传席 《计算机工程与应用》 CSCD 北大核心 2009年第25期238-239,248,共3页
利用农产品价格时间序列的当前值和过去值准确预报未来值,将有利于正确引导农产品流通和农业生产,实现农产品区域供求平衡,并为政府和农户提供结构调整的依据。针对农产品价格这一重要问题,以白菜月价格数据为例,构建非平稳时间序列ARIM... 利用农产品价格时间序列的当前值和过去值准确预报未来值,将有利于正确引导农产品流通和农业生产,实现农产品区域供求平衡,并为政府和农户提供结构调整的依据。针对农产品价格这一重要问题,以白菜月价格数据为例,构建非平稳时间序列ARIMA(p,d,q)模型并预测白菜未来的月价格。结果表明ARIMA(0,1,1)模型能很好地模拟并预测白菜月价格趋势,为农产品市场信息的准确预测提供重要方法。 展开更多
关键词 农产品价格 时间序列 自回归移动平均模型 价格趋势
下载PDF
基于SARIMA、GM(1,1)和BP神经网络集成模型的GDP时间序列预测研究 被引量:40
2
作者 龙会典 严广乐 《数理统计与管理》 CSSCI 北大核心 2013年第5期814-822,共9页
本文深入分析了灰色预测模型、自回归移动平均(ARIMA)模型和BP神经网络模型的预测特性和优劣,并在此基础上建立了由ARIMA、GM(1,1)和BP神经网络集成的时间序列预测模型。针对呈现趋势变动性和周期波动性二重特性的时间序列,首先建立GM(1... 本文深入分析了灰色预测模型、自回归移动平均(ARIMA)模型和BP神经网络模型的预测特性和优劣,并在此基础上建立了由ARIMA、GM(1,1)和BP神经网络集成的时间序列预测模型。针对呈现趋势变动性和周期波动性二重特性的时间序列,首先建立GM(1,1)模型对序列的趋势项进行预测,然后建立基于ARIMA和BP神经网络的组合模型对序列的周期波动项进行预测,最后用乘积模型对二者预测值进行集成。GDP时间序列实证结果表明:集成模型的预测效果显著高于单一模型,从而证实了集成模型用于GDP预测的有效性. 展开更多
关键词 arima BP神经网络 GM(1 1)模型 集成模型 GDP预测
原文传递
基于小波变换与差分自回归移动平均模型的微博话题热度预测 被引量:13
3
作者 陈羽中 方明月 +1 位作者 郭文忠 郭昆 《模式识别与人工智能》 EI CSCD 北大核心 2015年第7期586-594,共9页
研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热... 研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热度.最后,提出基于小波变换与差分自回归移动平均模型的微博话题热度预测方法,以此预测话题热度(能量值)及话题能量峰值.实验表明,文中方法可有效预测话题热度及峰值,具有较低的残差和遗漏率. 展开更多
关键词 话题热度预测 用户影响力 老化理论 小波变换 差分自回归移动平均模型(arima)
下载PDF
季节性变动影响下的上海港集装箱吞吐量预测 被引量:11
4
作者 杜刚 刘娅楠 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期234-239,共6页
港口吞吐量精准预测对于每一个港口的成功经营和有效决策都十分重要.季节性波动经常会影响港口吞吐量,为了更为准确地预测上海港口集装箱吞吐量,本文选取2007年至2012年上海港母港集装箱吞吐量的月度数据,并对于港口集装箱吞吐量的月度... 港口吞吐量精准预测对于每一个港口的成功经营和有效决策都十分重要.季节性波动经常会影响港口吞吐量,为了更为准确地预测上海港口集装箱吞吐量,本文选取2007年至2012年上海港母港集装箱吞吐量的月度数据,并对于港口集装箱吞吐量的月度数据中出现的季节性波动进行了处理,采用季节时间序列模型对其进行预测.为了说明方法的有效性,以同样的数据,使用整自回归移动平均模型对上海港集装箱吞吐量进行预测.两种方法预测结果进行对比发现,利用季节时间序列模型对港口集装箱吞吐量季节性进行处理,能够提高港口集装箱吞吐量的预测精度. 展开更多
关键词 单整自回归移动平均模型 季节时间序列模型 港口集装箱吞吐量 预测
下载PDF
三种时间序列模型在尘肺发病预测中的适用性研究 被引量:10
5
作者 赵俊琴 李建国 赵春香 《中国工业医学杂志》 CAS 2017年第3期168-171,共4页
目的对基于时间序列的三种预测模型即自回归滑动平均混合模型(ARIMA)、灰色模型(GM)、广义回归神经网络模型(GRNN)进行尘肺发病预测的适用性比较。方法选用河北省1954—2015年62年的尘肺发病数据,前54年数据用来拟合预测,后8年数据来比... 目的对基于时间序列的三种预测模型即自回归滑动平均混合模型(ARIMA)、灰色模型(GM)、广义回归神经网络模型(GRNN)进行尘肺发病预测的适用性比较。方法选用河北省1954—2015年62年的尘肺发病数据,前54年数据用来拟合预测,后8年数据来比较三种模型的预测效果;采用预测误差(prediction error,PE)、平均绝对误差(mean absolute error,MAE)和平均相对误差(mean relative error,MRE)评价拟合效果。结果 GM(1,1)的预测结果较差,ARIMA的MAE和MRE是三种模型中最小的,其短期预测的PE也最低;三种方法长期预测的PE都比较大,比较而言GRNN的长期预测结果最好。结论 ARIMA适用于尘肺发病的短期预测,GRNN适用于长期预测。 展开更多
关键词 尘肺发病预测 时间序列 自回归滑动平均混合模型(arima) 灰色模型(GM) 广义回归神经网络模型(GRNN) 模型比较
原文传递
基于自回归求积移动平均的制动器温度预测方法 被引量:11
6
作者 张姝玮 郭忠印 陈立辉 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第6期2080-2086,共7页
利用VBOX III设备采集刹车鼓温度数据,建立基于自回归求积移动平均(ARIMA)的制动器温度预测模型。通过对比不同样本长度和预测长度给模型预测精度带来的变化确定最优样本长度和预测长度。最后,分析坡度、坡长、平均行驶速度和初始温度... 利用VBOX III设备采集刹车鼓温度数据,建立基于自回归求积移动平均(ARIMA)的制动器温度预测模型。通过对比不同样本长度和预测长度给模型预测精度带来的变化确定最优样本长度和预测长度。最后,分析坡度、坡长、平均行驶速度和初始温度等因素对模型精度造成的影响。结果表明:ARIMA(4,2,2)模型可以较好地拟合制动器温度变化;利用20 s长度的数据对9 s长度的数据进行预测效果最佳;坡度、坡长等因素对模型预测精度均无显著影响。该模型具有较好的精度和通用性。 展开更多
关键词 道路与铁道工程 制动器温度 交通安全 自回归求积移动平均模型
原文传递
停车场泊位占有率预测方法评价 被引量:9
7
作者 唐克双 郝兆康 +1 位作者 衣谢博闻 刘冰清 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期533-543,共11页
采用上海市五角场地区的停车泊位检测数据,分析了商业、办公和体育场3种不同类型停车场泊位占有率(parking occupancy rate,POR)的时变特征,并评价了ARIMA(autoregressive integrated moving average)、卡尔曼滤波和BP(back propagation... 采用上海市五角场地区的停车泊位检测数据,分析了商业、办公和体育场3种不同类型停车场泊位占有率(parking occupancy rate,POR)的时变特征,并评价了ARIMA(autoregressive integrated moving average)、卡尔曼滤波和BP(back propagation)神经网络等3种常用方法在POR预测中的适用性.结果表明,ARIMA和BP神经网络的预测精度总体优于卡尔曼滤波,BP神经网络在商业和办公停车场的短时预测中有较好的精度;3种方法的预测精度均随预测时间步长的增加而逐渐降低;不同类型停车场的POR预测精度存在较大差异,工作日的预测精度一般高于非工作日,且模型具有较好的自适应性. 展开更多
关键词 停车泊位占有率预测 arima模型 卡尔曼滤波 BP神经网络模型
下载PDF
基于ARIMA模型预测梅毒月发病率的价值 被引量:9
8
作者 马晓梅 徐学琴 +5 位作者 闫国立 施学忠 刘颖 王瑾瑾 刘晓蕙 裴兰英 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2018年第1期131-134,152,共5页
目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(roo... 目的探讨建立ARIMA模型在梅毒月发病率预测中的应用价值,为梅毒防控工作提供依据。方法运用Eviews8.0软件对2009年1月-2015年12月我国梅毒月发病率数据建立ARIMA模型,利用2016年1月-6月实际数据验证,评价模型精度指标采用均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均绝对百分误差(mean absolute percentage error,MAPE)、平均相对误差(mean relative error,MRE)。同法外推预测2016年7月-12月全国梅毒月发病率。结果 2009年1月-2016年6月全国梅毒月发病率最优模型是ARIMA(2,1,1)×(0,1,1)_(12),模型表达式为:(1-B)(1-B^(12))(1+0.820B)(1+0.566B^2)x_t^2=(1+0.365B)(1+0.897B^(12))ε_t,R^2=0.832,RMSE=0.181,MAE=0.118,MAPE=5.088。外推2016年7月-12月预测结果分别为3.124、3.008、2.906、2.691、2.714、2.717。结论 ARIMA模型具有较高的预测精度,可较好地拟合我国梅毒月发病率的演变趋势并进行短期预测。 展开更多
关键词 梅毒 arima模型 月发病率 预测
下载PDF
基于离散灰色预测模型与人工神经网络混合智能模型的时尚销售预测 被引量:10
9
作者 刘卫校 《计算机应用》 CSCD 北大核心 2016年第12期3378-3384,共7页
时尚销售预测对零售领域十分重要,准确的销售情况预测有助于大幅度提高最终时尚销售利润。针对目前时尚销售预测数据量有限并且数据波动大导致难以进行准确预测的问题,提出了一种结合人工神经网络(ANN)算法和离散灰色预测模型(DGM(1,1)... 时尚销售预测对零售领域十分重要,准确的销售情况预测有助于大幅度提高最终时尚销售利润。针对目前时尚销售预测数据量有限并且数据波动大导致难以进行准确预测的问题,提出了一种结合人工神经网络(ANN)算法和离散灰色预测模型(DGM(1,1))算法的混合智能预测算法。该算法通过关联度分析得到关联度大的影响变量,在利用DGM(1,1)+ANN预测之后,引入二次残差的思想,将实际销售数据与DGM(1,1)+ANN预测结果的残差加入影响变量利用ANN进行第二次残差预测。最后通过真实的时尚销售数据验证算法预测的可行性及准确性。实验结果表明,该算法在时尚销售数据的预测中,预测平均绝对百分误差(MAPE)在25%左右,预测性能优于自回归积分滑动平均模型(ARIMA)、扩展极限学习机(EELM)、DGM(1,1)、DGM(1,1)+ANN算法,相较于以上几种算法平均预测精度大约提高8个百分点。所提混合智能算法可用于时尚销售即时预测,且能够大幅度提高销售的效益。 展开更多
关键词 时尚销售预测 神经网络算法 离散灰色模型 关联度分析 自回归积分滑动平均模型
下载PDF
基于ARIMA LSTM组合模型的楼宇短期负荷预测方法研究 被引量:9
10
作者 李鹏辉 崔承刚 +1 位作者 杨宁 陈辉 《上海电力学院学报》 CAS 2019年第6期573-579,共7页
在楼宇短期负荷预测中,针对单一预测模型难以充分学习负荷时间序列中的特性问题,提出了一种基于自回归差分移动平均长短期记忆神经网络(ARIMA LSTM)组合模型的楼宇负荷预测方法。首先,根据灰色关联度选取相似日时间序列数据为训练样本;... 在楼宇短期负荷预测中,针对单一预测模型难以充分学习负荷时间序列中的特性问题,提出了一种基于自回归差分移动平均长短期记忆神经网络(ARIMA LSTM)组合模型的楼宇负荷预测方法。首先,根据灰色关联度选取相似日时间序列数据为训练样本;然后,利用ARIMA模型预测负荷,并将原始数据和ARIMA预测数据之间的误差视为非线性分量;最后,通过LSTM神经网络对误差序列进行校正,得到楼宇短期负荷的最终预测值。通过对上海市某楼宇的预测效果分析,并将其与ARIMA模型、LSTM模型和ARIMA SVM组合模型进行对比,验证了所提方法能够有效控制预测误差,提高楼宇负荷预测精度。 展开更多
关键词 楼宇短期负荷预测 自回归差分移动平均模型 长短期记忆神经网络 时间序列 灰色关联度
下载PDF
汽车零部件第三方物流仓储需求量集成预测模型 被引量:9
11
作者 金淳 曹迪 +1 位作者 王聪 李文立 《系统管理学报》 CSSCI CSCD 北大核心 2018年第6期1157-1165,共9页
考虑到汽车零部件第三方物流企业仓储需求量的预测精度受众多非线性、不可量化的不确定因素的影响,提出一种将定量预测与定性预测相结合的集成预测模型(SIF)。SIF模型中,用RBF神经网络模型预测复杂非线性波动趋势;为补足RBF模型的若干问... 考虑到汽车零部件第三方物流企业仓储需求量的预测精度受众多非线性、不可量化的不确定因素的影响,提出一种将定量预测与定性预测相结合的集成预测模型(SIF)。SIF模型中,用RBF神经网络模型预测复杂非线性波动趋势;为补足RBF模型的若干问题,用ARIMA模型预测在库量的季节性趋势,用定性预测模型解决难以量化的外部因素的变动对需求量的影响问题。最后,将三部分结果动态叠加作为SIF模型的输出。实例分析结果表明:与各单一模型、ARIMA与RBF的组合模型相比,SIF模型具有更高的预测精度和稳定性。研究表明了SIF模型对于第三方仓储物流需求量预测的有效性和适用性。 展开更多
关键词 集成预测模型 需求量 自回归积分滑动平均模型 RBF神经网络 定性预测
下载PDF
利用人工智能神经网络预测广州市PM_(2.5)日浓度 被引量:7
12
作者 李泽群 韦骏 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期645-652,共8页
利用差分整合移动平均自回归模型(ARIMA)、后向传播神经网络(BP)以及长短期记忆神经网络(LSTM),对广州市2015—2019年的PM_(2.5)浓度数据进行训练和预报,研究集合经验模态(EEMD)分解和时间分辨率对不同模型预报准确性的影响。结果表明,E... 利用差分整合移动平均自回归模型(ARIMA)、后向传播神经网络(BP)以及长短期记忆神经网络(LSTM),对广州市2015—2019年的PM_(2.5)浓度数据进行训练和预报,研究集合经验模态(EEMD)分解和时间分辨率对不同模型预报准确性的影响。结果表明,EEMD分解可以显著地提升低频分量的预报效果;提高输入数据的时间分辨率可以提升预报效果,尤其在ARIMA自回归模型预报中较为明显,用神经网络进行预报时需要考虑输入数据量增加带来模型复杂度增加的问题。由于模型使用前一天(t−1)的PM_(2.5)作为输入数据,即只能预报t+1天的PM_(2.5)值。为增加模型的预报时效,采用滚动预报的方式对模型进行优化,能够显著地提升预报时效,实现对t+n天的连续预报,且预报误差与后报结果相当。将时间精度为6 h的数据作为输入,用ARIMA模型进行预报的效果最好,最小MAE值为6.478。 展开更多
关键词 广州市 PM_(2.5) 整合移动平均自回归模型(arima) 后向传播神经网络(BP) 长短期记忆神经网络(LSTM) 集合经验模态分解(EEMD)
下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:5
13
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均自回归模型(arima) 变分模态分解 自适应模糊神经网络
下载PDF
兰州市水资源安全评价研究 被引量:1
14
作者 武兰珍 钱琛 +3 位作者 苗开元 李景 王玉才 张燕 《安全与环境学报》 CAS CSCD 北大核心 2023年第8期2939-2948,共10页
区域水资源安全是保障区域高质量发展的关键要素之一。鉴于兰州市因水资源安全问题对城市发展制约,根据区域水资源安全评价内涵,建立以水资源自然禀赋条件、社会协调系统、经济协调系统、生态环境及粮食安全系统为准则的水资源安全评价... 区域水资源安全是保障区域高质量发展的关键要素之一。鉴于兰州市因水资源安全问题对城市发展制约,根据区域水资源安全评价内涵,建立以水资源自然禀赋条件、社会协调系统、经济协调系统、生态环境及粮食安全系统为准则的水资源安全评价体系,并利用基于协调权重的模糊物元模型、障碍度模型和自回归移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)对兰州市2005—2030年水资源进行安全评价、预测和障碍因子诊断。结果显示:兰州市2005—2020年水资源安全状态经历了由恶劣到良好的转变,预测未来10 a兰州市水资源安全态势总体呈上升趋势;影响兰州市水资源安全的关键障碍因子为水资源自然禀赋条件。通过对影响兰州市水资源安全各指标辨识分析可知,提高水资源利用率、保证居民生活用水量安全、确保粮食产量安全、推广农业灌溉节水技术等措施是保障兰州市水资源安全的重要前提。 展开更多
关键词 环境学 水资源安全 模糊物元 障碍因子 自回归移动平均模型(arima) 兰州市
下载PDF
基于GRU和ARIMA混合模型的IGBT失效预测
15
作者 冯鹏程 《信息与电脑》 2023年第16期64-66,共3页
针对现有绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)失效特征预测误差较大的问题,构建一种基于门控循环单元(Gated Recurrent Units,GRU)和自回归整合移动平均模型(Autoregressive Integrated Moving Average model,A... 针对现有绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)失效特征预测误差较大的问题,构建一种基于门控循环单元(Gated Recurrent Units,GRU)和自回归整合移动平均模型(Autoregressive Integrated Moving Average model,ARIMA)的门控自回归混合失效预测模型。混合预测模型利用全连接层连接门控循环单元和自回归整合移动平均模型构建成。实验结果表明,门控自回归混合失效预测模型在均方误差、平均绝对误差和最大相对误差上的误差对比现存方法平均减少约12.94%。 展开更多
关键词 门控循环单元(GRU) 自回归整合移动平均模型(arima) 绝缘栅双极型晶体管(IGBT) 失效预测
下载PDF
改进的时间序列法用于边坡沉降分析与预测
16
作者 张恒 李超 滕明星 《北京测绘》 2023年第11期1445-1450,共6页
运用数学模型或力学方法对变形监测数据进行分析与预测尤为必要,本文详细介绍了时间序列法中的差分自回归移动平均模型(ARIMA)、平稳性与白噪声检验、模型定阶与参数估计、模型检验与预测的过程,针对其预测的准确性会随着时间推移而降... 运用数学模型或力学方法对变形监测数据进行分析与预测尤为必要,本文详细介绍了时间序列法中的差分自回归移动平均模型(ARIMA)、平稳性与白噪声检验、模型定阶与参数估计、模型检验与预测的过程,针对其预测的准确性会随着时间推移而降低的问题,提出了一种改进的时间序列法,通过建立一个动态的数据窗口,及时引入最新的数据信息更新计算模型参数,并对某轨道边坡工程的沉降监测数据进行了建模分析和对比预测。结果表明:改进后的方法提高了模型的预测精度,在实际工程中具有可行性和有效性。 展开更多
关键词 时间序列 差分自回归移动平均模型(arima) 边坡沉降 变形分析与预测
下载PDF
维修时点预测的动态车间调度问题 被引量:5
17
作者 匡鹏 吴尽昭 《计算机应用》 CSCD 北大核心 2016年第8期2340-2345,共6页
针对制造业中生产计划的不确定问题,提出一种维修时点预测与自适应的遗传模拟退火算法相结合的优化调度方法。该方法首先利用差分自回归移动平均模型预测设备未来的故障率,然后借助电气设备的威布尔(Weibull)分布模型逆向求出设备未来... 针对制造业中生产计划的不确定问题,提出一种维修时点预测与自适应的遗传模拟退火算法相结合的优化调度方法。该方法首先利用差分自回归移动平均模型预测设备未来的故障率,然后借助电气设备的威布尔(Weibull)分布模型逆向求出设备未来故障发生时刻,最后将此作为约束条件,利用自适应的遗传模拟退火算法解决传统的生产调度问题。结合工厂实际情况,主要分析了设备有无维修的随机调度问题,以最小化最大完工时间为目标,获取每一个任务的调度计划以及每一台设备的维修时点,确定出最佳调度方案。实验表明自适应的遗传模拟退火算法的性能较好。在河北某工厂的生产车间中,设备在运行调度方法后三个月的平均故障率比运行前相对降低了3.46%。 展开更多
关键词 自回归移动平均模型 设备故障率 遗传算法 模拟退火算法 生产调度
下载PDF
基于数据分解及因果推理的设备可靠性预测模型 被引量:1
18
作者 孙淑娴 田昕怡 +2 位作者 何泽昊 牛彬 胡锦波 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第5期44-50,共7页
为解决设备的可靠性数据受多种因素影响而同时具有线性特征和非线性特征的问题,提出1种集合经验模态分解法辅助的设备可靠性预测组合模型,该模型结合差分整合移动平均自回归模型和因果推理模型。首先,对原始数据采用集合经验模态分解法... 为解决设备的可靠性数据受多种因素影响而同时具有线性特征和非线性特征的问题,提出1种集合经验模态分解法辅助的设备可靠性预测组合模型,该模型结合差分整合移动平均自回归模型和因果推理模型。首先,对原始数据采用集合经验模态分解法,得到固有模态函数分量和余项;其次,将模态函数分量输入差分整合移动平均自回归模型得到线性分量,进而将线性分量和原始数据作差,得到非线性分量;最后,基于该非线性分量,提出因果分析模型,实现对设备可靠性的有效预测。研究结果表明:与流行的可靠性预测模型相比,组合模型分别在平均绝对误差和均方根误差指标上降低0.015 9和0.026 5,进一步证明本文所提方法的正确性和有效性。研究结果可为工业生产中提升设备可靠性预测提供新思路。 展开更多
关键词 差分整合移动平均自回归模型 集合经验模态分解方法 因果分析 设备可靠性预测
下载PDF
小波-ARIMA模型在贵广高铁隧道沉降预测中的应用 被引量:5
19
作者 毕旋旋 任超 +1 位作者 邓开元 于志文 《桂林理工大学学报》 CAS 北大核心 2020年第1期156-160,共5页
针对高铁隧道断面沉降状态的预测问题,提出了一种基于小波分析与自回归移动平均模型(ARIMA)组合的隧道断面沉降预测方法。分别采用ARIMA模型和基于小波分析的ARIMA模型对贵广高铁桂林-恭城路段隧道的沉降数据进行预测实验并对比,结果表... 针对高铁隧道断面沉降状态的预测问题,提出了一种基于小波分析与自回归移动平均模型(ARIMA)组合的隧道断面沉降预测方法。分别采用ARIMA模型和基于小波分析的ARIMA模型对贵广高铁桂林-恭城路段隧道的沉降数据进行预测实验并对比,结果表明,基于小波分析的ARIMA模型对于高铁隧道断面沉降预测精度提高较大,且稳定性强,可以满足工程需要,是一种有效可行的隧道沉降预测方法。 展开更多
关键词 高铁隧道 自回归移动平均模型 小波分析 沉降预测
下载PDF
工控上位机与可编程逻辑控制器的通信流量分析与预测 被引量:3
20
作者 于海东 刘嘉勇 《计算机应用》 CSCD 北大核心 2018年第A01期140-143,172,共5页
针对上位机与下位机之间的网络通信流量分析提出一种流量预测模型,以有效地预测上位机与可编程逻辑控制器(PLC)之间的通信流量。首先使用Wreshark抓包软件获取2 h内上位机与西门子s7-300可编程逻辑控制器之间通信链路中的所有数据包,将... 针对上位机与下位机之间的网络通信流量分析提出一种流量预测模型,以有效地预测上位机与可编程逻辑控制器(PLC)之间的通信流量。首先使用Wreshark抓包软件获取2 h内上位机与西门子s7-300可编程逻辑控制器之间通信链路中的所有数据包,将这些数据包根据上位机和下位机的IP地址过滤后,生成流量时间序列,并对其进行平稳性分析,分析结果表明该流量时间序列不具有平稳性。由于仅考虑流量时间序列中的短相关性,因此选择时间序列预测模型(ARIMA)对该流量进行建模,建模完成后进行了模型预测与回测实验。实验结果显示绝大多数预测点的误差被控制在1%以内,仅有极个别点误差在2%之外。 展开更多
关键词 工业控制网络 流量建模 流量预测 arima 上位机 可编程逻辑控制器
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部