期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
UAV navigation in high dynamic environments:A deep reinforcement learning approach 被引量:14
1
作者 Tong GUO Nan JIANG +3 位作者 Biyue LI Xi ZHU Ya WANG Wenbo DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期479-489,共11页
Unmanned Aerial Vehicle(UAV) navigation is aimed at guiding a UAV to the desired destinations along a collision-free and efficient path without human interventions, and it plays a crucial role in autonomous missions i... Unmanned Aerial Vehicle(UAV) navigation is aimed at guiding a UAV to the desired destinations along a collision-free and efficient path without human interventions, and it plays a crucial role in autonomous missions in harsh environments. The recently emerging Deep Reinforcement Learning(DRL) methods have shown promise for addressing the UAV navigation problem,but most of these methods cannot converge due to the massive amounts of interactive data when a UAV is navigating in high dynamic environments, where there are numerous obstacles moving fast.In this work, we propose an improved DRL-based method to tackle these fundamental limitations.To be specific, we develop a distributed DRL framework to decompose the UAV navigation task into two simpler sub-tasks, each of which is solved through the designed Long Short-Term Memory(LSTM) based DRL network by using only part of the interactive data. Furthermore, a clipped DRL loss function is proposed to closely stack the two sub-solutions into one integral for the UAV navigation problem. Extensive simulation results are provided to corroborate the superiority of the proposed method in terms of the convergence and effectiveness compared with those of the state-of-the-art DRL methods. 展开更多
关键词 autonomous vehicles Deep learning Motion planning navigation Reinforcement learning Unmanned Aerial Vehicle(uav)
原文传递
基于Stateflow技术多模态飞行控制律仿真 被引量:8
2
作者 吴了泥 黄一敏 《杭州电子科技大学学报(自然科学版)》 2005年第4期34-37,共4页
Stateflow是有限状态机原理的图形实现,能在仿真过程中进行连续状态间的切换。无人机飞行过程正是多模态飞行控制律的切换过程,是由飞行任务驱动的有限状态机系统。该文描述了如何用Stateflow实现控制模态间的切换,按无人机自主导航的... Stateflow是有限状态机原理的图形实现,能在仿真过程中进行连续状态间的切换。无人机飞行过程正是多模态飞行控制律的切换过程,是由飞行任务驱动的有限状态机系统。该文描述了如何用Stateflow实现控制模态间的切换,按无人机自主导航的控制逻辑建立了Stateflow仿真模型。仿真结果说明采用Stateflow实现多模态飞行控制律仿真的有效性。 展开更多
关键词 多模态 飞行控制 自主导航 无人机
下载PDF
基于迁移学习SAE的无人机目标识别算法研究 被引量:7
3
作者 谢冰 段哲民 +1 位作者 郑宾 殷云华 《红外与激光工程》 EI CSCD 北大核心 2018年第6期214-220,共7页
无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进... 无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进行识别与分类。针对这一问题,提出基于迁移学习卷积稀疏自动编码器(Sparse Auto-Encoder,SAE)实现对航拍多帧图像中敌方目标对象的识别与分类。算法首先借助SAE对源领域数据集中大量无标记样本进行无监督学习,获取其局部特征;然后,采用池化层卷积神经网络(CNN)算法提取目标图像全局特征;最后,送入Softmax回归模型实现目标对象的识别与分类。实验结果表明:与传统非迁移学习的SAE算法及基于底层视觉特征学习的识别算法相比,该算法具有更高的准确性。 展开更多
关键词 无人机自主导航 目标识别分类 稀疏自动编码器 卷积神经网络 迁移学习
下载PDF
A Technical Framework for Selection of Autonomous UAV Navigation Technologies and Sensors 被引量:3
4
作者 Izzat Al-Darraji Morched Derbali +4 位作者 Houssem Jerbi Fazal Qudus Khan Sadeeq Jan Dimitris Piromalis Georgios Tsaramirsis 《Computers, Materials & Continua》 SCIE EI 2021年第8期2771-2790,共20页
The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obsta... The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work. 展开更多
关键词 uav navigation sensors selection uav navigation autonomous navigation uav development navigation sensors study navigation systems mapping systems obstacle-avoidance systems
下载PDF
Autonomous Navigation for Unmanned Aerial Vehicles Based on Chaotic Bionics Theory 被引量:3
5
作者 Xiao-lei Yu~(1,2) Yong-rong Sun~1 Jian-ye Liu~1 Bing-wen Chen~31.Navigation Research Centre,Nanjing Universi~ of Aeronautics and Astronautics,Nanjing 210016,P.R.China2.Institute for Technology Research & Innovation,Deakin University,Vic 3217,Australia3.Institute.for Unmanned Aerial Vehicle Research,Beihang University,Beijing 100083,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期270-279,共10页
In this paper a new reactive mechanism based on perception-action bionics for multi-sensory integration applied to Un- manned Aerial Vehicles (UAVs) navigation is proposed.The strategy is inspired by the olfactory bul... In this paper a new reactive mechanism based on perception-action bionics for multi-sensory integration applied to Un- manned Aerial Vehicles (UAVs) navigation is proposed.The strategy is inspired by the olfactory bulb neural activity observed in rabbits subject to external stimuli.The new UAV navigation technique exploits the use of a multiscroll chaotic system which is able to be controlled in real-time towards less complex orbits,like periodic orbits or equilibrium points,considered as perceptive orbits.These are subject to real-time modifications on the basis of environment changes acquired through a Synthetic Aperture Radar (SAR) sensory system.The mathematical details of the approach are given including simulation results in a virtual en- vironment.The results demonstrate the capability of autonomous navigation for UAV based on chaotic bionics theory in com- plex spatial environments. 展开更多
关键词 chaotlc system perception-action bionlcs uav multi-sensoty integration autonomous navigation
下载PDF
Deep-reinforcement-learning-based UAV autonomous navigation and collision avoidance in unknown environments
6
作者 Fei WANG Xiaoping ZHU +1 位作者 Zhou ZHOU Yang TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期237-257,共21页
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge... In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN. 展开更多
关键词 Faster R-CNN model Replay memory Data Deposit Mechanism(DDM) Two-part training approach Image-based autonomous navigation and Collision Avoidance(ANCA) Unmanned Aerial Vehicle(uav)
原文传递
Imaginary filtered hindsight experience replay for UAV tracking dynamic targets in large-scale unknown environments 被引量:2
7
作者 Zijian HU Xiaoguang GAO +2 位作者 Kaifang WAN Neretin EVGENY Jinliang LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期377-391,共15页
As an advanced combat weapon,Unmanned Aerial Vehicles(UAVs)have been widely used in military wars.In this paper,we formulated the Autonomous Navigation Control(ANC)problem of UAVs as a Markov Decision Process(MDP)and ... As an advanced combat weapon,Unmanned Aerial Vehicles(UAVs)have been widely used in military wars.In this paper,we formulated the Autonomous Navigation Control(ANC)problem of UAVs as a Markov Decision Process(MDP)and proposed a novel Deep Reinforcement Learning(DRL)method to allow UAVs to perform dynamic target tracking tasks in large-scale unknown environments.To solve the problem of limited training experience,the proposed Imaginary Filtered Hindsight Experience Replay(IFHER)generates successful episodes by reasonably imagining the target trajectory in the failed episode to augment the experiences.The welldesigned goal,episode,and quality filtering strategies ensure that only high-quality augmented experiences can be stored,while the sampling filtering strategy of IFHER ensures that these stored augmented experiences can be fully learned according to their high priorities.By training in a complex environment constructed based on the parameters of a real UAV,the proposed IFHER algorithm improves the convergence speed by 28.99%and the convergence result by 11.57%compared to the state-of-the-art Twin Delayed Deep Deterministic Policy Gradient(TD3)algorithm.The testing experiments carried out in environments with different complexities demonstrate the strong robustness and generalization ability of the IFHER agent.Moreover,the flight trajectory of the IFHER agent shows the superiority of the learned policy and the practical application value of the algorithm. 展开更多
关键词 Artificial intelligence autonomous navigation control Deep reinforcement learning Hindsight experience replay uav
原文传递
未知环境中无人机实时导航的人工势场方法 被引量:4
8
作者 宋孝成 刘晓培 陆疌 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第3期393-402,共10页
针对无人机在未知环境中的实时避障,提出一种局部规划方法。该方法根据传感器实时探测到的障碍点信息,随时构建出一个狄利克雷边值问题。采用有限差分法求解该问题,即得到一个局部地图的拉普拉斯势场。随着传感器信息的更新,不断更换新... 针对无人机在未知环境中的实时避障,提出一种局部规划方法。该方法根据传感器实时探测到的障碍点信息,随时构建出一个狄利克雷边值问题。采用有限差分法求解该问题,即得到一个局部地图的拉普拉斯势场。随着传感器信息的更新,不断更换新构建的势场。这种构建势场的方法对各种障碍物形态适应程度高,且势场中不存在局部极小点。以势场的负梯度方向作为参考方向,并以此生成参考速度,采用PID控制器进行速度跟踪以实现无人机的自主导航。最后,使用MATLAB进行不同场景下的仿真实验,结果表明本方法可以有效实现无人机在不同未知环境下的实时避障导航。 展开更多
关键词 避障 自主导航 拉普拉斯方程 人工势场 狄利克雷问题 无人机
下载PDF
地下复杂空间无人机研究进展及其面临的挑战 被引量:1
9
作者 王保兵 王凯 +2 位作者 王丹丹 高海跃 王春喜 《工矿自动化》 CSCD 北大核心 2023年第7期6-13,48,共9页
分析了地下复杂空间无人机的技术发展与应用现状,指出地下复杂空间无人机面临单体性能不足、环境态势感知与自主导航能力有限、编队协同能力有限等问题,针对上述问题,展望了地下无人机关键技术发展趋势:①小型化轻量化一体化无人机设计... 分析了地下复杂空间无人机的技术发展与应用现状,指出地下复杂空间无人机面临单体性能不足、环境态势感知与自主导航能力有限、编队协同能力有限等问题,针对上述问题,展望了地下无人机关键技术发展趋势:①小型化轻量化一体化无人机设计技术。通过改进无人机的机械结构,提高激光雷达、深度相机等信息感知传感器与控制系统的集成度,优化电源管理系统等,最终实现单体无人机巡航速度、续航时间等性能的提升;②GPS拒止环境下态势感知与自主导航技术。攻克即时定位与地图构建(SLAM)导航与实时路径规划等关键技术难题,围绕特定场景逐步突破算法的局限性,提升无人系统的感知能力、环境适应性和鲁棒性;③有限信息下编队协同控制技术。攻克异构/同构无人机集群协同、复杂信道环境下的无线通信等技术难题,通过优化无人机群体智能控制策略、信息交互机制及任务决策协同机制等,增强集群无人系统的鲁棒性,提高无人系统在地下复杂环境中的自适应能力,进而提升无人系统的任务执行效率与成功率。 展开更多
关键词 无人机 地下复杂空间 GPS拒止环境 环境态势感知 自主导航 小型化轻量化一体化无人机 协同控制
下载PDF
基于Mission Planner的无人机自主导航测量系统设计与实现 被引量:2
10
作者 马晨皓 杨国东 +1 位作者 邸健 张旭晴 《科学技术与工程》 北大核心 2022年第27期11792-11800,共9页
针对目前测量工具价格较为昂贵、测量手段多采用人工采集的方式,设计一款基于Mission Planner开源地面站和全球导航卫星系统(global navigation satellite system, GNSS)相结合的无人机自主导航测量系统。该系统由四旋翼无人机、APM(adv... 针对目前测量工具价格较为昂贵、测量手段多采用人工采集的方式,设计一款基于Mission Planner开源地面站和全球导航卫星系统(global navigation satellite system, GNSS)相结合的无人机自主导航测量系统。该系统由四旋翼无人机、APM(advanced power management)控制器、Mission Planner地面站和PPK(post processed kinematic)后差分系统构成,共设计手动和自动导航两种控制方式。自动导航模式中可通过Mission Planner地面测控系统的地图模块、数据交互模块,实现无人机按照设计预设航线进行飞行,并获取目标点的空间三维坐标。通过GNSS-BDS/GPS系统定位试验和自动导航对比试验得出,此套自动测量系统静态达到厘米级的定位精度,自动导航模式下的定位精度达到分米级。最终将其应用到点位坐标测量中,该系统所测得数据误差控制在10 cm内,满足测量工作中的基本需求。研究结果可对今后开展全自主测量技术设备的研发提供理论基础和实践参考。 展开更多
关键词 Mission Planner 自主导航 测量系统 PPK 无人机
下载PDF
Unity3D无人航行器水下自主航行三维仿真 被引量:1
11
作者 相琳 周振华 《现代制造技术与装备》 2021年第7期72-75,共4页
介绍了一种用于水下无人航行器研制和试验阶段内部软件系统联合调试的手段,通过Unity3D构建水下三维仿真海洋环境,建立无人航行器水下运动和动力学模型,并对航行器搭载的传感器和执行器进行数学建模,组建水下三维仿真系统。它与实际航... 介绍了一种用于水下无人航行器研制和试验阶段内部软件系统联合调试的手段,通过Unity3D构建水下三维仿真海洋环境,建立无人航行器水下运动和动力学模型,并对航行器搭载的传感器和执行器进行数学建模,组建水下三维仿真系统。它与实际航行器软件系统通过与实物一致的接口相连,组成了一个数据传输环流系统,可进行航行器自主航行仿真测试。 展开更多
关键词 UNITY3D 三维仿真 自主航行 无人航行器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部