Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
To create autonomous robots,both hardware and software are needed.If enormous progress has already been made in the field of equipment,then robot software depends on the development of artificial intelligence.This art...To create autonomous robots,both hardware and software are needed.If enormous progress has already been made in the field of equipment,then robot software depends on the development of artificial intelligence.This article proposes a solution for creating“logical”brains for autonomous robots,namely,an approach for creating an intelligent robot action planner based on Mivar expert systems.The application of this approach provides opportunities to reduce the computational complexity of solving planning problems and the requirements for the computational characteristics of hardware platforms on which intelligent planning systems are deployed.To theoretically and practically justify the expediency of using logically solving systems,in particular Mivar expert systems,to create intelligent planners,the MIPRA(Mivar-based Intelligent Planning of Robot Actions)planner was created to solve problems such as STRIPS for permutation cubes in the Blocks World domain.The planner is based on the platform for creating expert systems of the Razumator.As a result,the Mivar planner can process information about the state of the subject area based on the analysis of cause-effect relationships and an algorithm for automatically constructing logical inference(finding a solution from“Given”to“Find”).Moreover,an important feature of the MIPRA is that the system is built on the principles of a“white box”,due to which the system can explain any of its decisions and provide justification for the actions performed in the form of a retrospective of the stages of the decision-making process.When preparing a set of robot actions aimed at changing control objects,expert knowledge is used,which is the basis for the functioning algorithms of the planner.This approach makes it possible to include an expert in the process of organizing the work of the intelligent planner and use existing knowledge about the subject area.Practical experiments of this study have shown that instead of many hours and powerful multiprocessor servers,the MIP展开更多
To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This st...To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This study proposes a probabilistic decision-making and trajectory planning framework for the autonomous heavy trucks. Firstly, the driving decision process is divided into intention generation and feasibility evaluations, which are realized using the utility theory and risk assessment, respectively. Subsequently the driving decision is made and sent to the trajectory planning module. In order to reflect the greater risks of the truck to other surrounding vehicles, the aggressiveness index(AI) is proposed and quantified to infer the asymmetrical risk level of lane-change maneuver. In the planning stage, the lateral and roll dynamics stability domains are developed as the constraints to exclude the candidate trajectories that would cause vehicle instability. Finally, the simulation results are compared between the proposed model and the artificial potential filed model in the scenarios extracted from the naturalistic driving data. It is shown that the proposed framework can provide the human-like lane-change decisions and truck-friendly trajectories, and performs well in dynamic driving environments.展开更多
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
文摘To create autonomous robots,both hardware and software are needed.If enormous progress has already been made in the field of equipment,then robot software depends on the development of artificial intelligence.This article proposes a solution for creating“logical”brains for autonomous robots,namely,an approach for creating an intelligent robot action planner based on Mivar expert systems.The application of this approach provides opportunities to reduce the computational complexity of solving planning problems and the requirements for the computational characteristics of hardware platforms on which intelligent planning systems are deployed.To theoretically and practically justify the expediency of using logically solving systems,in particular Mivar expert systems,to create intelligent planners,the MIPRA(Mivar-based Intelligent Planning of Robot Actions)planner was created to solve problems such as STRIPS for permutation cubes in the Blocks World domain.The planner is based on the platform for creating expert systems of the Razumator.As a result,the Mivar planner can process information about the state of the subject area based on the analysis of cause-effect relationships and an algorithm for automatically constructing logical inference(finding a solution from“Given”to“Find”).Moreover,an important feature of the MIPRA is that the system is built on the principles of a“white box”,due to which the system can explain any of its decisions and provide justification for the actions performed in the form of a retrospective of the stages of the decision-making process.When preparing a set of robot actions aimed at changing control objects,expert knowledge is used,which is the basis for the functioning algorithms of the planner.This approach makes it possible to include an expert in the process of organizing the work of the intelligent planner and use existing knowledge about the subject area.Practical experiments of this study have shown that instead of many hours and powerful multiprocessor servers,the MIP
基金supported by the National Natural Science Foundation of China(5187051675)。
文摘To improve the safety and driving stability of the autonomous heavy truck, it is necessary to consider the differences of driving behavior and drivable trajectories between the heavy trucks and passenger cars. This study proposes a probabilistic decision-making and trajectory planning framework for the autonomous heavy trucks. Firstly, the driving decision process is divided into intention generation and feasibility evaluations, which are realized using the utility theory and risk assessment, respectively. Subsequently the driving decision is made and sent to the trajectory planning module. In order to reflect the greater risks of the truck to other surrounding vehicles, the aggressiveness index(AI) is proposed and quantified to infer the asymmetrical risk level of lane-change maneuver. In the planning stage, the lateral and roll dynamics stability domains are developed as the constraints to exclude the candidate trajectories that would cause vehicle instability. Finally, the simulation results are compared between the proposed model and the artificial potential filed model in the scenarios extracted from the naturalistic driving data. It is shown that the proposed framework can provide the human-like lane-change decisions and truck-friendly trajectories, and performs well in dynamic driving environments.