期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
射频自动目标识别技术 被引量:12
1
作者 邱景辉 李在清 +1 位作者 宋朝晖 陈燕 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2000年第1期107-110,共4页
射频自动目标识别技术是利用微波及收发天线实现对目标的远距离自动识别 ,文中对多通道零中频检测技术、无源反射调制技术及射频供电技术进行了分析和实验研究 ,并设计研制出了一套射频自动识别系统 .该系统只用单一频率即可完成收发功... 射频自动目标识别技术是利用微波及收发天线实现对目标的远距离自动识别 ,文中对多通道零中频检测技术、无源反射调制技术及射频供电技术进行了分析和实验研究 ,并设计研制出了一套射频自动识别系统 .该系统只用单一频率即可完成收发功能 ,具有节约频率资源的特点 .所研制的射频识别系统工作于91 5MHz ,射频功率 1 .5W ,射频卡为平板振子结构 ,作用距离 0~ 1 0m ,数据 1 0kb s ,具有计算机控制自动显示 。 展开更多
关键词 自动识别 零中频检测 射频识别 目标识别
下载PDF
一种微机型自动准同期装置 被引量:13
2
作者 李俊霞 涂仁川 +1 位作者 严兵 苗强 《继电器》 CSCD 北大核心 2002年第9期53-54,共2页
介绍了在WZQ - 3基础上而开发的更新换代的自动准同期装置。它由CPU插件完成同期预报及发电机电压、频率的调节功能 ,另有专门的硬件电路完成相位闭锁功能 。
关键词 微机型 自动准同期装置 电力系统 单片机 A/D转换
下载PDF
光纤型输液器液位自动报警装置 被引量:9
3
作者 李长胜 柴石婷 +1 位作者 马迎建 张春熹 《激光杂志》 CAS CSCD 北大核心 2006年第5期91-92,共2页
利用光纤传输以及液面全内反射方式,并采用光源脉冲调制和锁相环信号检测技术,研制了一种光纤型液位自动报警装置,已经用于输液器输液终了时的远距离自动报警。该装置抗干扰能力强、安全可靠、成本低且易于网络化,并可以用于其它种类液... 利用光纤传输以及液面全内反射方式,并采用光源脉冲调制和锁相环信号检测技术,研制了一种光纤型液位自动报警装置,已经用于输液器输液终了时的远距离自动报警。该装置抗干扰能力强、安全可靠、成本低且易于网络化,并可以用于其它种类液位的非接触远距离监测。 展开更多
关键词 光纤传感器 输液器 自动报警 脉冲调制与解调
下载PDF
协同调制识别算法在电力线通信网络中的设计与实现 被引量:8
4
作者 石刘强 石顾禹 +1 位作者 杨明 钱玉文 《计算机工程》 CAS CSCD 北大核心 2019年第8期159-164,共6页
电力线通信(PLC)是物联网、智能电网中重要的通信方式。然而,当有新节点接入PLC网络时,无法正确识别PLC网络中具体的调制方式,从而导致接入失败。为此,通过构建多输入多输出(MIMO)的PLC系统模型,提出一种基于PLC-MIMO结构的协同调制识... 电力线通信(PLC)是物联网、智能电网中重要的通信方式。然而,当有新节点接入PLC网络时,无法正确识别PLC网络中具体的调制方式,从而导致接入失败。为此,通过构建多输入多输出(MIMO)的PLC系统模型,提出一种基于PLC-MIMO结构的协同调制识别方法,以实现新节点自动接入PLC网络。采用多节点的发送信号四阶累积量作为识别器的特征参数,结合极大似然的判决规则进行协同识别,同时引入权重因子,设计一种改进协同调制识别算法来提高正确识别率。仿真结果表明,与一般协同识别算法相比,该算法正确识别率提高6 %,具有更好的识别性能,可适用于PLC传感网络系统。 展开更多
关键词 物联网 智能电网 电力线通信 多输入多输出 自动接入 调制识别
下载PDF
航空电源地面自动测试系统的设计与实现 被引量:8
5
作者 汪洋 张泾周 胡钢成 《计算机工程与设计》 CSCD 北大核心 2006年第16期3051-3054,共4页
航空电源的地面测试是飞机电源设备检测的一项重要环节。针对航空交直流电源系统的地面检测与特性试验,设计与实现了一种计算机自动测试与分析系统。描述了系统的总体结构和主要功能,论述了电源系统交直流参数的检测分析与处理方法、基... 航空电源的地面测试是飞机电源设备检测的一项重要环节。针对航空交直流电源系统的地面检测与特性试验,设计与实现了一种计算机自动测试与分析系统。描述了系统的总体结构和主要功能,论述了电源系统交直流参数的检测分析与处理方法、基于RS485总线的速度调节控制算法以及基于网格搜索的交流负荷自动加卸载调节管理算法的原理与实现。该系统现已正式投入运行,各项指标均满足设计要求。 展开更多
关键词 电源系统 地面试验 自动测试 数据采集 速度调节 负荷管理
下载PDF
通信设备技术指标自动测试与故障诊断系统设计 被引量:6
6
作者 刘丽丽 杜永锋 《软件》 2023年第5期52-56,共5页
通过分析某型号无线电通信设备的技术指标,参考多种标准所述的各类检测目标及方法,依据无线电通信设备通用技术架构与实现技术,甄选通用电子测量仪器作为自动化测试系统硬件平台,采用C#语言作为自动化测试系统软件开发语言,设计一套适... 通过分析某型号无线电通信设备的技术指标,参考多种标准所述的各类检测目标及方法,依据无线电通信设备通用技术架构与实现技术,甄选通用电子测量仪器作为自动化测试系统硬件平台,采用C#语言作为自动化测试系统软件开发语言,设计一套适用于模拟调制无线电通信设备技术指标自动化检测的测试系统。通过理解与掌握某型号无线电通信设备的工作原理与检测技术,结合相关标准对检测项目的定义,充分验证通用电子测量仪器在测试项目中的执行效果而设计的这套测试系统,不仅提高了模拟调制无线电通信设备的检测效率,而且可以通过自定义的故障信息库,进行故障定位导航,缩短故障排查的时间。 展开更多
关键词 短波通信 自动测试 模拟调制 故障定位 通信
下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
7
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
下载PDF
Classifying Modulations in Communication Intelligence Using Deep Learning Networks
8
作者 Yahya BENREMDANE Said JAMAL +2 位作者 Oumaima TAHERI Jawad LAKZIZ Said OUASKIT 《Journal of Systems Science and Information》 CSCD 2024年第3期379-392,共14页
The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting... The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically. 展开更多
关键词 automatic modulation classification artificial intelligence deep learning radio frequency electronicwarfare
原文传递
基于RBF神经网络的无线电信号自动调制识别方法
9
作者 张双玲 谷小娅 《通信电源技术》 2024年第2期196-198,共3页
无线电信号自动调制识别存在信号识别准确率低的问题。因此,设计基于径向基函数(Radial Basis Function,RBF)神经网络的无线电信号自动调制识别方法。提取无线电自动调制信号特征,划分调制信号为若干信号块,识别调制类型。基于RBF神经... 无线电信号自动调制识别存在信号识别准确率低的问题。因此,设计基于径向基函数(Radial Basis Function,RBF)神经网络的无线电信号自动调制识别方法。提取无线电自动调制信号特征,划分调制信号为若干信号块,识别调制类型。基于RBF神经网络构建信号自动调制识别模型,将RBF作为隐单元的“基”,并通过隐单元函数空间,映射调制信号矢量特征到隐空间,通过调制信号瞬时角频率偏移情况,确定自动调制类型,实现无线电信号的自动调制与精准识别。开展对比实验,实验结果表明该方法的识别准确率更高,能够应用于实际生活。 展开更多
关键词 径向基函数(RBF) 无线电信号 自动调制 识别方法
下载PDF
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification
10
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION MULTI-SCALE
下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
11
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network Depthwise convolution
下载PDF
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
12
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(AMC) deep learning(DL) few-shot learning Internet of Things(IoT)
下载PDF
An effective approach for low-complexity maximum likelihood based automatic modulation classification of STBC-MIMO systems 被引量:3
13
作者 Maqsood H.SHAH Xiao-yu DANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第3期465-476,共12页
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equali... A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance. 展开更多
关键词 Multiple-input multiple-output Space-time block code Maximum likelihood automatic modulation classification ZERO-FORCING
原文传递
西门子PLC在磨煤机控制系统中的应用 被引量:3
14
作者 毛锁过 常静 《陕西电力》 2009年第6期79-81,共3页
介绍了蒲城发电公司磨煤机PLC控制系统的构成及控制原理;从自动控制系统软、硬件及其基本控制原理、程序编制方法等方面较详细地论述了采用PLC实现对系统各电机的启停控制及对液压站加载压力的自动调节,达到控制磨煤机液压站出口总管压... 介绍了蒲城发电公司磨煤机PLC控制系统的构成及控制原理;从自动控制系统软、硬件及其基本控制原理、程序编制方法等方面较详细地论述了采用PLC实现对系统各电机的启停控制及对液压站加载压力的自动调节,达到控制磨煤机液压站出口总管压力恒定的目的,以解决磨煤机稳定运行问题。 展开更多
关键词 磨煤机 PLC控制系统 液压站 自动调节 稳定运行
下载PDF
A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification 被引量:2
15
作者 Shanchuan Ying Sai Huang +3 位作者 Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo 《China Communications》 SCIE CSCD 2023年第5期135-147,共13页
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat... Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models. 展开更多
关键词 automatic modulation classification deep neural network convolutional neural network TRANSFORMER
下载PDF
Automatic modulation classification using modulation fingerprint extraction 被引量:2
16
作者 NOROLAHI Jafar AZMI Paeiz AHMADI Farzaneh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期799-810,共12页
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by... An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations. 展开更多
关键词 automatic modulation classification in-phase-quadrature(I-Q)constellation diagram spectral analysis feature based modulation classification
下载PDF
基于高阶循环累积量和支持矢量机的分级调制分类算法 被引量:2
17
作者 冯祥 元洪波 《电讯技术》 北大核心 2012年第6期878-882,共5页
利用观测样本的高阶循环累积量特征,提出一种基于支持矢量机的分级调制分类算法,实现了对QAM调制信号的自动识别。该算法具有较快的分类器训练速度和较低的复杂度,对时延和相位旋转具有稳健性,并可在干扰环境下实现对感兴趣信号调制类... 利用观测样本的高阶循环累积量特征,提出一种基于支持矢量机的分级调制分类算法,实现了对QAM调制信号的自动识别。该算法具有较快的分类器训练速度和较低的复杂度,对时延和相位旋转具有稳健性,并可在干扰环境下实现对感兴趣信号调制类型的识别。理论分析和仿真结果均证明了算法的正确性和有效性。 展开更多
关键词 QAM调制信号 自动识别 调制分类 高阶循环累积量 循环平稳性 支持矢量机
下载PDF
Automatic modulation classification based on Alex Net with data augmentation 被引量:2
18
作者 Zhang Chengchang Xu Yu +1 位作者 Yang Jianpeng Li Xiaomeng 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期51-61,共11页
Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a meth... Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a method for automatic modulation classification(AMC) using AlexNet with data augmentation was proposed. Three data augmentation methods is considered, i.e., random erasing, CutMix, and rotation. Firstly, modulated signals are converted into constellation representations. And all constellation representations are divided into training dataset and test dataset. Then, training dataset are augmented by three methods. Secondly, the optimal value of execution probability for random erasing and CutMix are determined. Simulation results show that both of them perform optimally when execution probability is 0.5. Thirdly, the performance of three data augmentation methods are evaluated. Simulation results demonstrate that all augmentation methods can improve the classification accuracy. Rotation improves the classification accuracy by 13.04% when signal noise ratio(SNR) is 2 dB. Among three methods, rotation outperforms random erasing and CutMix when SNR is greater than-6 dB. Finally, compared with other classification algorithms, random erasing, CutMix, and rotation used in this paper achieved the performance significantly improved. It is worth mentioning that the classification accuracy can reach 90.5% with SNR at 10 dB. 展开更多
关键词 automatic modulation classification(AMC) data augmentation random erasing CutMix ROTATION deep learning(DL)
原文传递
非协调通信信号自动调制识别系统研究 被引量:2
19
作者 谢宝成 《电子设计工程》 2019年第3期150-154,共5页
同频频率和杂波辐射频率干扰对传统系统精准识别影响较大,为了解决该问题,提出了非协调通信信号自动调制识别系统设计。架构总体结构框图,使用TMS320VC5510A型号芯片设计DSP数字信号处理器,并对内部连接示意图进行分析,使信号顺利传递... 同频频率和杂波辐射频率干扰对传统系统精准识别影响较大,为了解决该问题,提出了非协调通信信号自动调制识别系统设计。架构总体结构框图,使用TMS320VC5510A型号芯片设计DSP数字信号处理器,并对内部连接示意图进行分析,使信号顺利传递到处理器中。设计流水线结构转换方式,避免杂波辐射频率干扰。面向DSP处理器对软件功能模块展开设计,分析信号管理模式与调制机制,实现多线程通信。判断多线程通信信号似然度,并跟踪,根据跟踪结果对信号进行识别。通过对比结果可知,该系统最高识别精准度可达到95%,具有较好识别能力。 展开更多
关键词 非协调通信 信号 自动调制 识别 信号处理器 流水线
下载PDF
基于LSTM的微波通信发射机失真自动补偿方法 被引量:1
20
作者 高燕 王彬彬 《自动化与仪器仪表》 2023年第1期6-9,14,共5页
微波通信发射机输出信号受到周期互补序列干扰容易产生失真,为了提高通信输出稳定性,提出基于LSTM的微波通信发射机失真自动补偿方法。构建微波通信发射机的信号输出模型,采用完备序列和正交序列交叉性补偿的方法,进行微波通信发射机信... 微波通信发射机输出信号受到周期互补序列干扰容易产生失真,为了提高通信输出稳定性,提出基于LSTM的微波通信发射机失真自动补偿方法。构建微波通信发射机的信号输出模型,采用完备序列和正交序列交叉性补偿的方法,进行微波通信发射机信号滤波检测,提取微波通信发射机信号的谱特征量,通过期望信号的跟踪性补偿方法实现对发射机输出信号失真参数估计,采用LSTM正交调制的方法,实现微波通信发射机信号失真的自动补偿,并分析微波通信发射机信号失真的模态混叠现象和端点效应,实现对微波通信发射机信号失真补偿性能分析和仿真。仿真测试结果表明,采用该方法进行微波通信发射机信号补偿的自适应性较好,接收信号的降噪能力较强,提高了通信的稳定性,降低了误码率。 展开更多
关键词 LSTM 微波通信 发射机 失真 自动补偿 正交调制
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部