期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
人体前景的自动抠图算法 被引量:4
1
作者 冉清 冯结青 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第2期277-286,共10页
在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人... 在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人体前景自动抠图.该深度学习网络包括2个阶段:人体前景分割阶段和人体前景Alpha抠图阶段.在人体前景分割阶段,采用Mask R-CNN网络中的目标检测和掩码生成2个负载,并结合训练数据进行迁移学习,得到了适用于人体前景二值化分割的模型网络.在人体前景Alpha抠图阶段,采用Encoder-Decoder网络架构实现Alpha蒙板的自动预测.首先引入核为5的非学习卷积层,以上一个阶段的二值化分割结果作为输入,自动得到三分图Trimap,再和人体前景训练数据一起作为此阶段抠图网络的输入;经过学习迭代,获得能够预测人体前景Alpha蒙板的模型网络.在实验部分,以单幅系统采集人体图像为输入,无需额外先验和人工交互,可以自动估计人体前景Alpha掩码结果.用户测试结果以及与其他方法的对比和分析证明了文中算法的可靠性和鲁棒性;同时,该自动抠图算法还对其他公开数据集的人体图像进行了掩码预测,实验结果表明该算法具有一定的泛化能力. 展开更多
关键词 前景分割 Alpha抠图 深度学习 自动人体抠图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部