期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
人体前景的自动抠图算法
被引量:
4
1
作者
冉清
冯结青
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第2期277-286,共10页
在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人...
在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人体前景自动抠图.该深度学习网络包括2个阶段:人体前景分割阶段和人体前景Alpha抠图阶段.在人体前景分割阶段,采用Mask R-CNN网络中的目标检测和掩码生成2个负载,并结合训练数据进行迁移学习,得到了适用于人体前景二值化分割的模型网络.在人体前景Alpha抠图阶段,采用Encoder-Decoder网络架构实现Alpha蒙板的自动预测.首先引入核为5的非学习卷积层,以上一个阶段的二值化分割结果作为输入,自动得到三分图Trimap,再和人体前景训练数据一起作为此阶段抠图网络的输入;经过学习迭代,获得能够预测人体前景Alpha蒙板的模型网络.在实验部分,以单幅系统采集人体图像为输入,无需额外先验和人工交互,可以自动估计人体前景Alpha掩码结果.用户测试结果以及与其他方法的对比和分析证明了文中算法的可靠性和鲁棒性;同时,该自动抠图算法还对其他公开数据集的人体图像进行了掩码预测,实验结果表明该算法具有一定的泛化能力.
展开更多
关键词
前景分割
Alpha抠图
深度学习
自动人体抠图
下载PDF
职称材料
题名
人体前景的自动抠图算法
被引量:
4
1
作者
冉清
冯结青
机构
浙江大学CAD&CG国家重点实验室
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第2期277-286,共10页
基金
国家自然科学基金(61732015,61472349)
浙江省重点研发计划项目(2018C01090)
文摘
在基于立体视觉的人体建模系统中,背景像素的移除可以减少不必要的立体匹配计算,提高人体模型重建效率.为此,在给定大量具有前景Alpha蒙板真值的人体图像作为训练数据的前提下,提出了一个端到端的深度学习网络,以实现系统采集图像中人体前景自动抠图.该深度学习网络包括2个阶段:人体前景分割阶段和人体前景Alpha抠图阶段.在人体前景分割阶段,采用Mask R-CNN网络中的目标检测和掩码生成2个负载,并结合训练数据进行迁移学习,得到了适用于人体前景二值化分割的模型网络.在人体前景Alpha抠图阶段,采用Encoder-Decoder网络架构实现Alpha蒙板的自动预测.首先引入核为5的非学习卷积层,以上一个阶段的二值化分割结果作为输入,自动得到三分图Trimap,再和人体前景训练数据一起作为此阶段抠图网络的输入;经过学习迭代,获得能够预测人体前景Alpha蒙板的模型网络.在实验部分,以单幅系统采集人体图像为输入,无需额外先验和人工交互,可以自动估计人体前景Alpha掩码结果.用户测试结果以及与其他方法的对比和分析证明了文中算法的可靠性和鲁棒性;同时,该自动抠图算法还对其他公开数据集的人体图像进行了掩码预测,实验结果表明该算法具有一定的泛化能力.
关键词
前景分割
Alpha抠图
深度学习
自动人体抠图
Keywords
foreground
segmentation
Alpha
matting
deep
learning
automatic
human
body
matting
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
人体前景的自动抠图算法
冉清
冯结青
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部