High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness ...High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness of the target changes in a large scale,the fixed electron multiplying(EM) gain will not be suited to the sensing limitation.Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper.The control value is the average of the maximum signals of every light spot in an array,which has been demonstrated to be kept stable even under the influence of some noise and turbulence,and sensitive enough to the change of target brightness.A goal value is needed in the control process and it is predetermined based on the characters of EMCCD.Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust,the sensing SNR reaches the maximum for the corresponding signal level,and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.展开更多
A 10 Gbit/s burst-mode preamplifier is designed for passive optical networks (PONs). To achieve a high dynamic range and fast response, the circuit is DC coupled, and a feed-back type peak detector is designed to pe...A 10 Gbit/s burst-mode preamplifier is designed for passive optical networks (PONs). To achieve a high dynamic range and fast response, the circuit is DC coupled, and a feed-back type peak detector is designed to perform auto-gaincontrol and threshold extraction. Regulated cascade (RGC) architecture is exploited as the input stage to reduce the input impedance of the circuit and isolate the large parasitic capacitance including the photodiode capacitance from the determination pole, thus increasing the bandwidth. This preamplifier is implemented using the low-cost 0. 13 ixm CMOS technology. The die area is 425 μm × 475 μm and the total power dissipation is 23.4 mW. The test results indicate that the preamplifier can work at a speed from 1.25 to 10.312 5 Gbit/s, providing a high transimpedance gain of 64.0 dBΩ and a low gain of 54. 6 dBl2 with a dynamic input range of over 22.9 dB. The equivalent input noise current is 23. 4 pA/ Hz1/2. The proposed burst amplifier satisfies related specifications defined in 10G-EPON and XG-PON standards.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,61205021,and 61405194)the State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
文摘High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness of the target changes in a large scale,the fixed electron multiplying(EM) gain will not be suited to the sensing limitation.Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper.The control value is the average of the maximum signals of every light spot in an array,which has been demonstrated to be kept stable even under the influence of some noise and turbulence,and sensitive enough to the change of target brightness.A goal value is needed in the control process and it is predetermined based on the characters of EMCCD.Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust,the sensing SNR reaches the maximum for the corresponding signal level,and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.
基金The Key Technology Research and Development Program of Jiangsu Province ( No. BE2008128)
文摘A 10 Gbit/s burst-mode preamplifier is designed for passive optical networks (PONs). To achieve a high dynamic range and fast response, the circuit is DC coupled, and a feed-back type peak detector is designed to perform auto-gaincontrol and threshold extraction. Regulated cascade (RGC) architecture is exploited as the input stage to reduce the input impedance of the circuit and isolate the large parasitic capacitance including the photodiode capacitance from the determination pole, thus increasing the bandwidth. This preamplifier is implemented using the low-cost 0. 13 ixm CMOS technology. The die area is 425 μm × 475 μm and the total power dissipation is 23.4 mW. The test results indicate that the preamplifier can work at a speed from 1.25 to 10.312 5 Gbit/s, providing a high transimpedance gain of 64.0 dBΩ and a low gain of 54. 6 dBl2 with a dynamic input range of over 22.9 dB. The equivalent input noise current is 23. 4 pA/ Hz1/2. The proposed burst amplifier satisfies related specifications defined in 10G-EPON and XG-PON standards.