为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间...为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间-速度”对具有时间序列的特点,设计了一个复杂的能用于速度拾取的卷积神经网络(convolutional neural network,CNN)和长短期记忆(long-short term memory,LSTM)模型混合结构神经网络模型。该模型经过训练,可以对输入的速度谱进行自动拾取,并输出“时间速度”对序列。理论和实际地震数据测试结果表明,相对于基于反演过程的传统速度拾取算法,基于深度学习的地震速度谱自动拾取方法无需附加任何约束和干预,不仅实现了完全自动化的速度拾取,而且具有更高的拾取精度。展开更多
文摘为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间-速度”对具有时间序列的特点,设计了一个复杂的能用于速度拾取的卷积神经网络(convolutional neural network,CNN)和长短期记忆(long-short term memory,LSTM)模型混合结构神经网络模型。该模型经过训练,可以对输入的速度谱进行自动拾取,并输出“时间速度”对序列。理论和实际地震数据测试结果表明,相对于基于反演过程的传统速度拾取算法,基于深度学习的地震速度谱自动拾取方法无需附加任何约束和干预,不仅实现了完全自动化的速度拾取,而且具有更高的拾取精度。