期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的中文微博命名实体识别 被引量:15
1
作者 刘玉娇 琚生根 +1 位作者 李若晨 金玉 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第S2期142-146,共5页
针对微博用语不规范、噪声多、更新快、缩略语多,且数据量大等相关特点,提出基于深度学习的方法进行微博命名实体的识别。首先利用大量的未标注的微博信息对自动编码器训练,获得抽象特征,随后将这些特征作为深度学习网络的输入,最后得... 针对微博用语不规范、噪声多、更新快、缩略语多,且数据量大等相关特点,提出基于深度学习的方法进行微博命名实体的识别。首先利用大量的未标注的微博信息对自动编码器训练,获得抽象特征,随后将这些特征作为深度学习网络的输入,最后得出句子中每个字的类标。在进行自动编码器训练的过程中,使用卷积方法替代窗口移动方法,以获取句子中的长依赖信息。通过对新浪微博数据的实验结果表明,该深度学习方法能够提高微博中命名实体识别的F1值,说明了本文算法的有效性。 展开更多
关键词 微博 深度学习 自动编码器 卷积 命名实体识别
下载PDF
基于域适应神经网络的调制方式分类方法 被引量:2
2
作者 史蕴豪 许华 单俊杰 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第5期69-75,共7页
针对深度学习进行调制方式识别领域测试样本与训练样本存在分布差异的问题,提出了基于域适应神经网络的调制识别方法。首先采用VGG16深度卷积神经网络提取信号小波变换后系数图像特征;然后利用自编码器对高维特征进行降维处理;再计算训... 针对深度学习进行调制方式识别领域测试样本与训练样本存在分布差异的问题,提出了基于域适应神经网络的调制识别方法。首先采用VGG16深度卷积神经网络提取信号小波变换后系数图像特征;然后利用自编码器对高维特征进行降维处理;再计算训练样本特征与测试样本特征之间的CORAL损失;最后联合优化分类损失和CORAL损失使模型达到最优。通过仿真实验证明,在信号类别存在差异或信道环境存在差异的条件下,引入域适应技术可提高待测信号识别准确率5%以上。 展开更多
关键词 调制识别 域适应 迁移学习 自编码器 CORAL损失
下载PDF
Application of deep autoencoder model for structural condition monitoring
3
作者 PATHIRAGE Chathurdara Sri Nadith LI Jun +2 位作者 LI Ling HAO Hong LIU Wanquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期873-880,共8页
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea... Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion. 展开更多
关键词 auto encoder non-linear regression deep auto en-coder model damage identification VIBRATION structural health monitoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部