Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zon...Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zone melting etc., is reported for the first time in continuous wave diode laser processing of steels. Influence of laser interaction time on surface morphology/topology of austenitic manganese and pearlitic steels is investigated utilizing a wide rectangular multi-mode diode laser beam. X-ray diffraction analysis of the laser treated austenitic steel surface showed strong texturing influence, with preferred crystallographic orientation of γ-Fe crystals in the (200) plane, which increased with interaction time. In case of pearlitic steel, no such texturing influence could be observed. The free surface topologies were also observed to be different in each case, with well-aligned domes of γ-Fe observed in laser treated austenitic steel as compared to randomly oriented fine domes of metal oxides in pearlitic one. In situ surface temperature measurement during laser irradiation indicated higher temperature on pearlitic steel than in austenitic manganese steel owing to its lower effective thermal conductivity associated with higher oxide film formation.展开更多
To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed u...To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.展开更多
This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composit...This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composition of phases and the content of elements inthe micro regions by XRD,EDAX respectively and concludes from the results that thestrengthening of martensite transformation and high density of dislocations lead to thehigh work-hardening capacity in the steel.展开更多
The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of wor...The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of work-hardening in- creases with the increase of C and aging tempera- ture but decreases with Mn.The work-hardening with high austenitic stability results mainly from dislocations,and that with low austenitic stability results mainly from combined effects of strain-in- duced martensite and high density of dislocations under non-severe impact loading conditions.The wear resistance of medium manganese steel (Mn7) is 1.64-2.46 times that of Hadfield steel (Mnl3).展开更多
By means of thermodynamic calculations, optical microscope, sweep electron microscope(SEM), transimssion electron microscope(TEM) and microcomposition detection, the modifying effect of RE and Ti on austenitic mangane...By means of thermodynamic calculations, optical microscope, sweep electron microscope(SEM), transimssion electron microscope(TEM) and microcomposition detection, the modifying effect of RE and Ti on austenitic manganese steel was investigated The results show that the constitutional supercooling of austenitic manganese steel during solidification can be improved and the dendritic crystals can be grown facilely, melted, isolated and multiplied by adding RE(Ce) In the melt the alloying elements Ti and C can form TiC directly which acts as nucleus of cementite and causes both primary and eutectic cementite to be granulated and refined so that the cementite network in this steel can be eliminated展开更多
文摘Microstructuring of steel resulting in directional solidification and texturing, previously observed in various metallic materials during pulsed laser processing, melt-spinning, high-gradient liquid metal melting, zone melting etc., is reported for the first time in continuous wave diode laser processing of steels. Influence of laser interaction time on surface morphology/topology of austenitic manganese and pearlitic steels is investigated utilizing a wide rectangular multi-mode diode laser beam. X-ray diffraction analysis of the laser treated austenitic steel surface showed strong texturing influence, with preferred crystallographic orientation of γ-Fe crystals in the (200) plane, which increased with interaction time. In case of pearlitic steel, no such texturing influence could be observed. The free surface topologies were also observed to be different in each case, with well-aligned domes of γ-Fe observed in laser treated austenitic steel as compared to randomly oriented fine domes of metal oxides in pearlitic one. In situ surface temperature measurement during laser irradiation indicated higher temperature on pearlitic steel than in austenitic manganese steel owing to its lower effective thermal conductivity associated with higher oxide film formation.
基金supported by the Special Foundation for Introducing and Selecting Talent in Hefei University of Technology, China (No. 2004000197)
文摘To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.
文摘This paper presents the in-situ TEM tensile observation of the nucleation and growth ofmartensite and the dislocation configuration change in metastable austenitic manganesesteels and the investigation of the composition of phases and the content of elements inthe micro regions by XRD,EDAX respectively and concludes from the results that thestrengthening of martensite transformation and high density of dislocations lead to thehigh work-hardening capacity in the steel.
文摘The effect of C,Mn and heat-treatment on work-hardening of austenitic Mn steel and the work-hardening mechanism have been investigated under non-severe impact loading condition.The results show that the ability of work-hardening in- creases with the increase of C and aging tempera- ture but decreases with Mn.The work-hardening with high austenitic stability results mainly from dislocations,and that with low austenitic stability results mainly from combined effects of strain-in- duced martensite and high density of dislocations under non-severe impact loading conditions.The wear resistance of medium manganese steel (Mn7) is 1.64-2.46 times that of Hadfield steel (Mnl3).
文摘By means of thermodynamic calculations, optical microscope, sweep electron microscope(SEM), transimssion electron microscope(TEM) and microcomposition detection, the modifying effect of RE and Ti on austenitic manganese steel was investigated The results show that the constitutional supercooling of austenitic manganese steel during solidification can be improved and the dendritic crystals can be grown facilely, melted, isolated and multiplied by adding RE(Ce) In the melt the alloying elements Ti and C can form TiC directly which acts as nucleus of cementite and causes both primary and eutectic cementite to be granulated and refined so that the cementite network in this steel can be eliminated