期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向Stacking集成的改进分类算法及其应用 被引量:11
1
作者 陆万荣 许江淳 李玉惠 《计算机应用与软件》 北大核心 2022年第2期281-286,共6页
为了提高Stacking集成算法的分类性能,充分利用Stacking学习机制产生的先验信息和贝叶斯网络丰富的概率表达能力,提出一种基于属性值加权朴素贝叶斯算法的Stacking集成分类算法AVWNB-Stacking(Stacking based Attribute Value Weight Na... 为了提高Stacking集成算法的分类性能,充分利用Stacking学习机制产生的先验信息和贝叶斯网络丰富的概率表达能力,提出一种基于属性值加权朴素贝叶斯算法的Stacking集成分类算法AVWNB-Stacking(Stacking based Attribute Value Weight Naive Bayes)。通过考虑属性值这个深层次的因素,以互信息(Mutual Information,MI)作为权值度量的基础,对属性权值向量横向扩展为每个属性值分配一个权值,避免不同的属性值共享相同的权值,从而解决朴素贝叶斯算法作为Stacking元分类器由于属性独立性假设带来的分类精度损失。实验结果表明,相比于传统算法及其他元分类器的Stacking分类算法,AVWNB-Stacking算法有效提高了模型的分类性能,在两个测试集上AUC值分别达到了0.8007和0.8607。 展开更多
关键词 Stacking集成 贝叶斯网络 互信息 属性值加权
下载PDF
一种基于属性值权重的k-modes聚类分析算法 被引量:1
2
作者 郝荣丽 胡立华 《计算机与数字工程》 2023年第5期1001-1004,1119,共5页
针对k-modes方法未考虑各属性值在属性空间的分布特征而导致分类变量间差异性度量不准确的问题,提出了一种基于属性值权重的k-modes聚类分析算法。该算法利用属性值之间的差异和属性值的权重,重新定义了相异度度量公式;采用属性值频率... 针对k-modes方法未考虑各属性值在属性空间的分布特征而导致分类变量间差异性度量不准确的问题,提出了一种基于属性值权重的k-modes聚类分析算法。该算法利用属性值之间的差异和属性值的权重,重新定义了相异度度量公式;采用属性值频率和各属性值的权重,给出一种聚类中心更新迭代公式,有效地体现了属性值在属性空间中的分布特征和属性之间的重要性差异;采用UCI数据集,验证了算法的有效性。 展开更多
关键词 聚类分析 k-modes 属性值权重 属性值频率 相异度度量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部