This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow...This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.展开更多
This paper investigates the attitude and orbit control for the combined spacecraft formed after a target spacecraft without the autonomous control ability is captured by a service spacecraft.The optimal controller of ...This paper investigates the attitude and orbit control for the combined spacecraft formed after a target spacecraft without the autonomous control ability is captured by a service spacecraft.The optimal controller of fully-actuated system is proposed to realize the attitude and orbit stabilization control of combined spacecraft.The stability of the system is proved by introducing Lyapunov function.Numerical simulation of the combined spacecraft and physical experiment based on the combined spacecraft simulator(CSS)are completed.Both simulation and experiment results demonstrate the effectiveness and practicability of the optimal controller of fully-actuated system.展开更多
基金This study was co-supported by the National Natural Science Foundation of China(Nos.62003371,62373379,62103446,61273351,62073343)the Outstanding Youth Fund of Hunan Provincial Natural Science,China(No.2022JJ20081)the Innovation Driven Project of Central South University,China(No.2023CXQD066).
文摘This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.
基金This paper was supported in part by the National Natural Science Foundation of China under Grant Nos.62173255 and 62188101.
文摘This paper investigates the attitude and orbit control for the combined spacecraft formed after a target spacecraft without the autonomous control ability is captured by a service spacecraft.The optimal controller of fully-actuated system is proposed to realize the attitude and orbit stabilization control of combined spacecraft.The stability of the system is proved by introducing Lyapunov function.Numerical simulation of the combined spacecraft and physical experiment based on the combined spacecraft simulator(CSS)are completed.Both simulation and experiment results demonstrate the effectiveness and practicability of the optimal controller of fully-actuated system.