Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear i...Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear in the big data environment.Firstly,to shorten the respond time of the DDoS attack detector;secondly,to reduce the required compute resources;lastly,to achieve a high detection rate with low false alarm rate.In the paper,we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems.We define a network flow abnormal index as PDRA with the percentage of old IP addresses,the increment of the new IP addresses,the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address.We design an IP address database using sequential storage model which has a constant time complexity.The autoregressive integrated moving average(ARIMA)trending prediction module will be started if and only if the number of continuous PDRA sequence value,which all exceed an PDRA abnormal threshold(PAT),reaches a certain preset threshold.And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT.Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence.Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption,identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate.展开更多
工业控制系统(简称工控)是国家关键基础设施的核心,越来越多的工作开始关注工控系统安全。然而,这些工作的实际应用场景并不统一,因此他们取得的成果无法相互借鉴。为了解决这个问题,在深入研究这些安全技术的基础上,我们提出了工控系...工业控制系统(简称工控)是国家关键基础设施的核心,越来越多的工作开始关注工控系统安全。然而,这些工作的实际应用场景并不统一,因此他们取得的成果无法相互借鉴。为了解决这个问题,在深入研究这些安全技术的基础上,我们提出了工控系统安全态势感知(Situational Awareness for Industrial Control Systems Security,SA-ICSS)框架,该框架由态势觉察、态势理解和态势投射三个阶段构成。在态势觉察阶段,我们首先利用网络测绘和脆弱性发现技术获取完善的目标系统环境要素,如网络拓扑和漏洞信息;其次,我们将入侵检测和入侵诱捕等5种设备部署在目标系统中,以便从控制系统中捕获所有的可疑活动。在态势理解阶段,我们首先基于结构化威胁信息表达(Structured Threat Information Expression,STIX)标准对目标系统进行本体建模,构建了控制任务间的依赖关系以及控制任务与运行设备的映射关系;其次,自动化推理引擎通过学习分析师推理技术,从可疑活动中识别出攻击意图以及目标系统可能受到的影响。在态势投射阶段,我们首先利用攻击图、贝叶斯网络和马尔科夫模型从可疑活动中构建攻击模型;其次,我们利用现有的威胁评估技术从攻击模型中预测可能发生的攻击事件、可能被感染的设备以及可能存在的零日漏洞。我们阐述了SA-ICSS各个阶段的任务范围,并对其中的关键技术进行了分析与总结。最后,我们还探讨了SA-ICSS待解决的若干问题。展开更多
基金This work was supported by the National Natural Science Foundation of China[No.61762033,61363071,61702539]The National Natural Science Foundation of Hainan[No.617048,2018CXTD333]+1 种基金Hainan University Doctor Start Fund Project[No.kyqd1328]Hainan University Youth Fund Project[No.qnjj1444].
文摘Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear in the big data environment.Firstly,to shorten the respond time of the DDoS attack detector;secondly,to reduce the required compute resources;lastly,to achieve a high detection rate with low false alarm rate.In the paper,we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems.We define a network flow abnormal index as PDRA with the percentage of old IP addresses,the increment of the new IP addresses,the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address.We design an IP address database using sequential storage model which has a constant time complexity.The autoregressive integrated moving average(ARIMA)trending prediction module will be started if and only if the number of continuous PDRA sequence value,which all exceed an PDRA abnormal threshold(PAT),reaches a certain preset threshold.And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT.Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence.Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption,identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate.
文摘工业控制系统(简称工控)是国家关键基础设施的核心,越来越多的工作开始关注工控系统安全。然而,这些工作的实际应用场景并不统一,因此他们取得的成果无法相互借鉴。为了解决这个问题,在深入研究这些安全技术的基础上,我们提出了工控系统安全态势感知(Situational Awareness for Industrial Control Systems Security,SA-ICSS)框架,该框架由态势觉察、态势理解和态势投射三个阶段构成。在态势觉察阶段,我们首先利用网络测绘和脆弱性发现技术获取完善的目标系统环境要素,如网络拓扑和漏洞信息;其次,我们将入侵检测和入侵诱捕等5种设备部署在目标系统中,以便从控制系统中捕获所有的可疑活动。在态势理解阶段,我们首先基于结构化威胁信息表达(Structured Threat Information Expression,STIX)标准对目标系统进行本体建模,构建了控制任务间的依赖关系以及控制任务与运行设备的映射关系;其次,自动化推理引擎通过学习分析师推理技术,从可疑活动中识别出攻击意图以及目标系统可能受到的影响。在态势投射阶段,我们首先利用攻击图、贝叶斯网络和马尔科夫模型从可疑活动中构建攻击模型;其次,我们利用现有的威胁评估技术从攻击模型中预测可能发生的攻击事件、可能被感染的设备以及可能存在的零日漏洞。我们阐述了SA-ICSS各个阶段的任务范围,并对其中的关键技术进行了分析与总结。最后,我们还探讨了SA-ICSS待解决的若干问题。