期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
利用Deeplab v3提取高分辨率遥感影像道路 被引量:10
1
作者 韩玲 杨朝辉 +2 位作者 李良志 刘志恒 黄勃学 《遥感信息》 CSCD 北大核心 2021年第1期22-28,共7页
针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、... 针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、测试;最后,得到高分辨率遥感影像道路提取结果。分析结果可知,该模型能够较好地提取高分辨率遥感影像中的道路边缘特征,相比其他道路提取方法具有更高的提取精度和更加完整的道路信息,正确率可达到93%以上。 展开更多
关键词 道路提取 高分辨率遥感影像 深度学习 Deeplab v3 空洞卷积 空洞空间金字塔池化(aspp)
下载PDF
基于改进Deeplab V3+网络的语义分割 被引量:8
2
作者 席一帆 孙乐乐 +1 位作者 何立明 吕悦 《计算机系统应用》 2020年第9期178-183,共6页
深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模... 深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)的卷积层进行分解.该算法能大幅度降低Deeplab V3+网络的参数量,提高网络推理速度.基于PASCAL VOC 2012数据集进行对比实验,实验结果显示改进网络模型拥有更快的处理速度和更优的分割效果,且消耗更少的内存. 展开更多
关键词 语义分割 Deeplab V3+模型 骨干网(ResNet101) 1D非瓶颈单元 空洞空间金字塔池化(aspp)
下载PDF
基于密集连接与特征增强的语义分割算法 被引量:2
3
作者 马素刚 陈期梅 +2 位作者 侯志强 杨小宝 张子贤 《计算机工程》 CAS CSCD 北大核心 2023年第3期263-270,共8页
在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空... 在语义分割算法DeepLabv3+中,由于对主干网络提取的特征信息利用不充分,导致了分割边缘不连续、目标丢失以及分割错误等问题。为此,提出一种基于密集连接和特征增强的语义分割算法。采用共享空洞空间金字塔池化(S-ASPP)模块建立多个空洞卷积之间的联系,增强局部信息之间的语义关联,捕获密集的采样点像素,同时提高对高层特征信息的利用。引入特征金字塔增强模块(FPEM)和特征融合模块(FFM),对主干网络输出的多层特征信息进行处理,增强特征的表达能力,并采用FFM对FPEM输出的不同尺度特征信息进行融合,提高各层特征之间的互补能力,以获得更全面的特征图信息。在此基础上,将S-ASPP和FFM的输出进行拼接和卷积操作,得到最终的分割结果。在PASCAL VOC 2012和Cityscapes数据集上的实验结果表明,该算法的平均交并比分别达到81.13%和73.39%,相较于基准算法DeepLabv3+分别提升了2.3和2.1个百分点,充分利用了骨干网络中的每层特征信息,提升了算法的分割精度,取得了较好的分割效果。 展开更多
关键词 语义分割 DeepLabv3+算法 空洞空间金字塔池化 特征金字塔增强模块 特征融合
下载PDF
基于特征增强的轻量级无人机目标检测算法
4
作者 陈运雷 刘紫燕 +3 位作者 吴应雨 郑旭晖 张倩 杨模 《传感技术学报》 CAS CSCD 北大核心 2023年第6期901-910,共10页
针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率... 针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率,同时降低模型复杂度;其次,提出基于注意力机制的Atrous Spatial Pyramid Pooling(ASPP)模块作为特征增强模块,加强上下文信息关联度以减少丢失小目标特征;最后,使用Focal Loss函数与CDIoU Loss函数,改善负样本对模型权重的影响以提高对密集目标的识别能力。实验结果表明,与原网络相比,改进后算法在VisDrone2021数据集上平均检测精度提升5.08%,参数量减少0.25 M,推理时间降低2.21 ms。 展开更多
关键词 无人机小目标检测 轻量化 Ghost模块 atrous spatial pyramid pooling(aspp) CDIoU Loss Focal Loss
下载PDF
改进Mask R-CNN的无人机影像建筑物提取
5
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
基于YOLOv5的改进型夜间车辆检测算法研究 被引量:1
6
作者 单威 李国新 朱东弼 《信息与电脑》 2023年第4期190-193,共4页
基于视觉图像的城市道路车辆检测是计算机视觉领域重要的研究课题之一。目前,其在白天环境下已取得良好的成果,但夜间环境的车辆检测问题仍存在许多研究难点。文章主要基于深度学习中目标检测(YOLOv5)算法进行改进,使用K-Means++算法获... 基于视觉图像的城市道路车辆检测是计算机视觉领域重要的研究课题之一。目前,其在白天环境下已取得良好的成果,但夜间环境的车辆检测问题仍存在许多研究难点。文章主要基于深度学习中目标检测(YOLOv5)算法进行改进,使用K-Means++算法获取先验框,提高收敛速度和检测准确率,使用空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)替换原模型的快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF),提高了召回率和平均准确率。实验表明,提出的YOLOv5x+ASPP较原网络YOLOv5x在驾驶数据集BDD100K上平均准确率提高了2.1个百分点。 展开更多
关键词 YOLOv5x 夜间车辆检测 K-means++ 空洞空间金字塔池化(aspp)
下载PDF
融合改进ASPP和极化自注意力的自底向上全景分割 被引量:1
7
作者 李新叶 陈丁 《中国图象图形学报》 CSCD 北大核心 2023年第8期2410-2419,共10页
目的针对ASPP(atrous spatial pyramid pooling)在空洞率变大时空洞(atrous)卷积效果会变差的情况,以及图像分类经典模型ResNet(residual neural network)并不能有效地适用于细粒度图像分割任务的问题,提出一种基于改进ASPP和极化自注... 目的针对ASPP(atrous spatial pyramid pooling)在空洞率变大时空洞(atrous)卷积效果会变差的情况,以及图像分类经典模型ResNet(residual neural network)并不能有效地适用于细粒度图像分割任务的问题,提出一种基于改进ASPP和极化自注意力的自底向上全景分割方法。方法重新设计ASPP模块,将小空洞率卷积的输出与原始输入进行拼接(concat),将得到的结果作为新的输入传递给大空洞率卷积,然后将不同空洞率卷积的输出结果拼接,并将得到的结果与ASPP中的其他模块进行最后拼接,从而改善ASPP中因空洞率变大导致的空洞卷积效果变差的问题,达到既获得足够感受野的同时又能编码多尺度信息的目的;在主干网络的输出后引入改进的极化自注意力模块,实现对图像像素级的自我注意强化,使其得到的特征能直接适用于细粒度像素分割任务。结果本文在Cityscapes数据集的验证集上进行测试,与复现的基线网络Panoptic-DeepLab(58.26%)相比,改进ASPP模块后分割精度PQ(panoptic quality)(58.61%)提高了0.35%,运行时间从103 ms增加到124 ms,运行速度没有明显变化;通过进一步引入极化自注意力,PQ指标(58.86%)提高了0.25%,运行时间增加到187 ms;通过对该注意力模块进一步改进,PQ指标(59.36%)在58.86%基础上又提高了0.50%,运行时间增加到192 ms,速度略有下降,但实时性仍好于大多数方法。结论本文采用改进ASPP和极化自注意力模块,能够更有效地提取适合细粒度像素分割的特征,且在保证足够感受野的同时能编码多尺度信息,从而提升全景分割性能。 展开更多
关键词 全景分割 语义分割 实例分割 极化自注意力 aspp
原文传递
基于YOLACT-RFX模型的穴盘甘蓝苗株分割算法
8
作者 王楷 韩笑 +2 位作者 朱华吉 缪祎晟 吴华瑞 《计算机工程》 CAS CSCD 北大核心 2023年第12期214-223,共10页
温室作物长势分析是近年来农业信息化领域中的研究热点,目前国内温室多用穴盘育苗的方式,其密集种植的特点和复杂的背景干扰给穴盘苗株的分割识别任务带来挑战。提出一种基于YOLACT-RFX的分割算法实现对穴盘内甘蓝苗株的高精度分割和苗... 温室作物长势分析是近年来农业信息化领域中的研究热点,目前国内温室多用穴盘育苗的方式,其密集种植的特点和复杂的背景干扰给穴盘苗株的分割识别任务带来挑战。提出一种基于YOLACT-RFX的分割算法实现对穴盘内甘蓝苗株的高精度分割和苗期识别。通过引入递归特征金字塔结构加强甘蓝苗株叶片边缘处的特征提取能力,改进相邻穴盘孔位中相互干扰苗株的分割性能。在递归特征金字塔结构中利用空洞空间金字塔池化结构对尺寸和形状快速变化的甘蓝苗株进行特征识别。最后,融合ResNeXt主干网络提升算法精度,加快模型收敛速度。基于甘蓝苗自建数据集验证所提算法的有效性,实验结果表明,当交并比为0.5时,YOLACT-RFX算法的各类平均精度为84.4%,平均召回率为92.7%,相较于YOLACT算法分别提升了3.6%和3.9%。在同等情况下,分割效果优于MASK-RCNN、SOLO、QueryInst等算法。改进后的YOLACT-RFX算法可实现对不同生长期内甘蓝穴盘苗株的高精度分割,为温室自动化甘蓝苗期管理提供技术基础。 展开更多
关键词 分割算法 甘蓝苗株 苗期识别 递归特征金字塔 空洞空间金字塔池化
下载PDF
基于空洞空间金字塔池化和多头自注意力的特征提取网络 被引量:3
9
作者 万黎明 张小乾 +1 位作者 刘知贵 李理 《计算机应用》 CSCD 北大核心 2022年第S02期79-85,共7页
针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,... 针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,提高局部特征信息的感受野;其次,将改进的ASPP模型合并到残差网络(ResNet)的每个残差块中,使网络在多个维度上都具有多尺度特征提取能力;最后,将残差网络的底层残差块替换为多头自注意力(MHSA),增强网络特征学习能力,捕获数据和特征内部的相关性。图像分割实验中,与残差网络相比,在肺结节数据集中DICE相似系数(DICE)提升了5.16个百分点,肝癌数据集中DICE提升了5.22个百分点;目标检测实验中,与残差网络相比,平均精度均值(MAP)提升了2.9个百分点。实验结果表明,PPSANet能够有效解决图像处理中多尺度特征提取能力弱和内部信息捕获能力差的问题,在一定程度上提高了图像处理的能力。 展开更多
关键词 深度学习 特征提取 图像分割 目标检测 自注意力 空洞空间金字塔池化
下载PDF
基于注意力机制的腰椎间盘突出患者多裂肌分割方法
10
作者 李夏 胡巍 +4 位作者 王子民 贺泽华 周悦 关挺强 郭欣 《吉林大学学报(信息科学版)》 CAS 2023年第5期876-884,共9页
为解决分割目标和周围结构边界不清楚的问题,提出一种基于注意力机制的腰椎间盘突出患者多裂肌分割方法。该网络采用了编码器-解码器的结构,通过引入注意力机制模块提升网络分割精度,并在特征提取后引入空洞空间卷积池化金字塔模块,融... 为解决分割目标和周围结构边界不清楚的问题,提出一种基于注意力机制的腰椎间盘突出患者多裂肌分割方法。该网络采用了编码器-解码器的结构,通过引入注意力机制模块提升网络分割精度,并在特征提取后引入空洞空间卷积池化金字塔模块,融合了上下文信息,以提升网络模型的性能。实验结果表明,在推理时间接近的情况下,该模型与经典U-Net算法相比,Dice系数提升了7.8%,Jaccard相似系数提升了10.1%,Hausdorff Distance下降了69.5%,提高了多裂肌脂肪浸润部位的分割精度。 展开更多
关键词 腰椎间盘突出症 核磁共振成像 U-Net算法 注意力机制 空洞空间卷积池化金字塔
下载PDF
改进全卷积神经网络的甲状腺结节分割方法
11
作者 张雅婷 帅仁俊 +2 位作者 黄道宏 赵宸 吴梦麟 《数据采集与处理》 CSCD 北大核心 2023年第4期873-885,共13页
为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featur... 为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featuretransfer,FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。 展开更多
关键词 甲状腺结节 分割 特征提取 空洞空间卷积池化金字塔
下载PDF
基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割 被引量:3
12
作者 魏超宇 韩文 +1 位作者 庞程 刘辉军 《江苏农业学报》 CSCD 北大核心 2021年第4期990-997,共8页
由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花... 由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花梨疏果期植株图像的准确分割。在研究中借鉴了编码-解码网络,其中编码网络采用DenseNet对多层特征进行复用和融合,以改善信息传递方式;解码网络使用转置卷积进行上采样,结合跳层连接融合浅层细节信息与深层语义信息;在编码、解码之间加入空洞空间金字塔池化(Atrous spatial pyramid pooling,ASPP)用于提取不同感受野的特征图以融合多尺度特征,聚合上下文信息。结果表明,ASPP有效提高了模型的分割精度,MDNet在测试集上的平均局域重合度(MIoU)为77.97%,分别较SegNet、Deeplabv2和DNet提高了8.10个、5.77个和2.17个百分点,果实、枝干和叶片的像素准确率分别为93.57%、90.31%和95.43%,实现了黄花梨植株果实、枝干和叶片等目标的准确分割。在翠冠梨植株图像的独立测试中,MIoU为70.93%,表明该模型具有较强的泛化能力,对自然环境下果蔬植株图像的分割有一定的参考价值。 展开更多
关键词 黄花梨植株 多尺度特征融合 密集连接网络 图像分割 空洞空间金字塔池化(aspp) 感受野
下载PDF
基于深度学习的卫星图像道路分割算法 被引量:3
13
作者 张新华 黄梦醒 +3 位作者 张雨 李玉春 单怡晴 冯思玲 《计算机工程》 CAS CSCD 北大核心 2021年第10期306-313,共8页
针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫... 针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫星图像道路数据集上的测试结果表明,与FCN、SegNet、U_Net算法相比,该算法模型的准确率、召回率和精确率指标分别达到96.3%、96.9%和96.6%,能够有效地对道路元素进行准确分割。 展开更多
关键词 深度学习 道路分割 密集连接模块 空间空洞金字塔结构 注意力监督机制
下载PDF
基于FCN-AC-ASPP的手写体去除方法
14
作者 方海泉 邓明明 冶运涛 《高技术通讯》 CAS 2022年第9期972-979,共8页
针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-... 针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-ASPP模型的训练和检测,该模型的分类准确率平均交并比(IoU)达到96.10%,优于全卷积神经网络(FCN)、DeeplabV3+、带空洞卷积的全卷积神经网络(FCN-AC)模型。最后对于同时含有印刷体和手写体的新图片,用训练好的FCN-AC-ASPP模型对印刷体和手写体分类,从而把手写体去除。 展开更多
关键词 手写体 印刷体 分类 全卷积神经网络(FCN) 空洞卷积(AC) 空洞空间金字塔池化(aspp)
下载PDF
基于卷积神经网络的语义分割算法研究 被引量:7
15
作者 熊炜 童磊 +3 位作者 金靖熠 王传胜 王娟 曾春艳 《计算机应用研究》 CSCD 北大核心 2021年第4期1261-1264,共4页
针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完... 针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完成语义分割;同时引入注意力模型作为辅助语义分割网络,辅助神经网络进行训练。该方法分别在Pascal VOC 2012数据集和增强的Pascal VOC 2012数据集上对网络进行训练,并在Pascal VOC 2012的验证集上进行测试,其平均交并集之比(mIoU)分别达到了78.55%和80.14%,表明该方法具有良好的语义分割性能。 展开更多
关键词 图像语义分割 联合特征金字塔模型 暗黑空间金字塔模型 注意力模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部