期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
DECANet:基于改进DeepLabv3+的图像语义分割方法
被引量:
7
1
作者
唐璐
万良
+1 位作者
王婷婷
李树胜
《激光与光电子学进展》
CSCD
北大核心
2023年第4期82-90,共9页
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建...
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建模提高网络的表达能力,选择性地学习并强化通道特征,提取有用信息,抑制无用信息。其次,利用改进的空洞空间金字塔池化(ASPP)结构,对提取到的图像卷积特征进行多尺度融合,减少图像细节信息丢失,且在权重参数不改变的情况下提取语义像素位置信息,加快模型的收敛速度。最后,DECANet在PASCAL VOC2012和Cityscapes数据集上的平均交并比分别达81.08%和76%,与现有的先进网络模型相比,检测性能更优,可以有效地捕获局部细节信息,减少图像语义像素分类错误。
展开更多
关键词
图像语义分割
注意力机制
空洞空间金字塔池化
多尺度融合
原文传递
题名
DECANet:基于改进DeepLabv3+的图像语义分割方法
被引量:
7
1
作者
唐璐
万良
王婷婷
李树胜
机构
贵州大学计算机科学与技术学院
贵州大学计算机软件与理论研究所
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第4期82-90,共9页
基金
国家自然科学基金(62062020)。
文摘
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建模提高网络的表达能力,选择性地学习并强化通道特征,提取有用信息,抑制无用信息。其次,利用改进的空洞空间金字塔池化(ASPP)结构,对提取到的图像卷积特征进行多尺度融合,减少图像细节信息丢失,且在权重参数不改变的情况下提取语义像素位置信息,加快模型的收敛速度。最后,DECANet在PASCAL VOC2012和Cityscapes数据集上的平均交并比分别达81.08%和76%,与现有的先进网络模型相比,检测性能更优,可以有效地捕获局部细节信息,减少图像语义像素分类错误。
关键词
图像语义分割
注意力机制
空洞空间金字塔池化
多尺度融合
Keywords
image
semantic
segmentation
attention
mechanism
atrous
space
pyramidal
pooling
(
aspp
)
multiscale
fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
DECANet:基于改进DeepLabv3+的图像语义分割方法
唐璐
万良
王婷婷
李树胜
《激光与光电子学进展》
CSCD
北大核心
2023
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部