Friction is a phenomenon observed ubiquitously in daily life,yet its nature is complicated.Friction between rough surfaces is considered to arise primarily because of macroscopic roughness.In contrast,interatomic forc...Friction is a phenomenon observed ubiquitously in daily life,yet its nature is complicated.Friction between rough surfaces is considered to arise primarily because of macroscopic roughness.In contrast,interatomic forces dominate between clean and smooth surfaces.“Superlubricity”,where friction effectively becomes zero,occurs when the ratio of lattice parameters in the pair of surfaces becomes an irrational number.Superlubricity has been found to exist in a limited number of systems,but is a very important phenomenon both in industry and in mechanical engineering.New atomistic research on friction is under way,with the aim of refining theoretical models that consider interactions between atoms beyond mean field theory and experiments using ultrahigh vacuum non-contact atomic force microscopy.Such research is expected to help clarify the nature of microscopic friction,reveal the onset conditions of friction and superlubricity as well as the stability of superlubricity,discover new superlubric systems,and lead to new applications.展开更多
This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine fun...This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine function is represented in an orthonormal frame while assimilating a point to a sublayer. This made it possible to draw up a graph integrating each of the diagrams of the known energy levels. Our results are conclusive. We can then confirm that the research hypothesis is verified.展开更多
To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and be...To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and been widely applied;i.e.machine learning potentials(MLPs).One recently developed type of MLP is the deep potential(DP)method.In this review,we provide an introduction to DP methods in computational materials science.The theory underlying the DP method is presented along with a step-by-step introduction to their development and use.We also review materials applications of DPs in a wide range of materials systems.The DP Library provides a platform for the development of DPs and a database of extant DPs.We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.展开更多
How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic sim...How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems.展开更多
The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomi...The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation.展开更多
In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of ma...In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
Al,Ca,and Zn are representative commercial alloying elements for Mg alloys.To investigate the effects of these elements on the deformation and recrystallization behaviors of Mg alloys,we develop interatomic potentials...Al,Ca,and Zn are representative commercial alloying elements for Mg alloys.To investigate the effects of these elements on the deformation and recrystallization behaviors of Mg alloys,we develop interatomic potentials for the Al-Ca,Al-Zn,Mg-Al-Ca and Mg-Al-Zn systems based on the second nearest-neighbor modified embedded-atom method formalism.The developed potentials describe structural,elastic,and thermodynamic properties of compounds and solutions of associated alloy systems in reasonable agreement with experimental data and higher-level calculations.The applicability of these potentials to the present investigation is confirmed by calculating the generalized stacking fault energy for various slip systems and the segregation energy on twin boundaries of the Mg-Al-Ca and Mg-Al-Zn alloys,accompanied with the thermal expansion coefficient and crystal structure maintenance of stable compounds in those alloys.展开更多
The influence of Cr doping on the surface characteristics of Ni metal, including the surface energy, work function,adsorption and dissociation, has been investigated by means of first-principles calculation based on d...The influence of Cr doping on the surface characteristics of Ni metal, including the surface energy, work function,adsorption and dissociation, has been investigated by means of first-principles calculation based on density functional theory. The results reveal that with the increase in Cr doping amount, the surface energies for all(111),(110) and(100)surfaces increase, whereas the work functions of(111) and(100) surfaces decrease followed by an increase and that of(110) surface has been decreasing. On the typical Ni(111) and Ni-Cr(111) surfaces, the adsorption energies follow the sequence O > OH > H > H_2O, and the doping of Cr increases the chemical activity of surfaces leading to the improvement of adsorption energies. The H_2O dissociating to OH and H is easier than the subsequent OH dissociating to O and H. The addition of Cr into Ni surface decreases the energy barriers and significantly increases the reaction rate constants.展开更多
A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation do...A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.展开更多
The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear band...The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures.展开更多
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In...The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.展开更多
Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polyc...Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.展开更多
Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrati...Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.展开更多
The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two...The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreeme展开更多
The prototypical E2 elimination and SN2 sub-stitution reactions between microsolvated fluoride and ethyl bromide show unexpected dynamic behaviors in mechanistic evolution driven by solvation and collision activation....The prototypical E2 elimination and SN2 sub-stitution reactions between microsolvated fluoride and ethyl bromide show unexpected dynamic behaviors in mechanistic evolution driven by solvation and collision activation.Considering the steric effects,the gas-phase selectivity favors an E2 pathway barely dependent on collision energies.Remarkably,base solvation steers the reaction in an effective way toward substitution at a near-thermal energy,whereas the governing high-energy events retain elimination.Chemical dynamics simulations reproduce exper-imental findings and uncover a crucial solute-solvent coupling in determining such competing processes.Interestingly,collision activation can tune the underlying atomistic dynamics essentially in the reactant entrance channel and cause a mechanism shift.These features for the ubiquitous competing E2/SN2 dynamics remain quite unknown,providing unique insight into reaction selectivity for complex chemical networks.展开更多
Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with...Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.展开更多
文摘Friction is a phenomenon observed ubiquitously in daily life,yet its nature is complicated.Friction between rough surfaces is considered to arise primarily because of macroscopic roughness.In contrast,interatomic forces dominate between clean and smooth surfaces.“Superlubricity”,where friction effectively becomes zero,occurs when the ratio of lattice parameters in the pair of surfaces becomes an irrational number.Superlubricity has been found to exist in a limited number of systems,but is a very important phenomenon both in industry and in mechanical engineering.New atomistic research on friction is under way,with the aim of refining theoretical models that consider interactions between atoms beyond mean field theory and experiments using ultrahigh vacuum non-contact atomic force microscopy.Such research is expected to help clarify the nature of microscopic friction,reveal the onset conditions of friction and superlubricity as well as the stability of superlubricity,discover new superlubric systems,and lead to new applications.
文摘This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine function is represented in an orthonormal frame while assimilating a point to a sublayer. This made it possible to draw up a graph integrating each of the diagrams of the known energy levels. Our results are conclusive. We can then confirm that the research hypothesis is verified.
基金T W and D J S gratefully acknowledge the support of the Research Grants Council,Hong Kong SAR,through the Collaborative Research Fund Project No.8730054The work of H W is supported by the National Science Foundation of China under Grant Nos.11871110 and 12122103The work of W E is supported in part by a gift from iFlytek to Princeton University。
文摘To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and been widely applied;i.e.machine learning potentials(MLPs).One recently developed type of MLP is the deep potential(DP)method.In this review,we provide an introduction to DP methods in computational materials science.The theory underlying the DP method is presented along with a step-by-step introduction to their development and use.We also review materials applications of DPs in a wide range of materials systems.The DP Library provides a platform for the development of DPs and a database of extant DPs.We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.
基金supported by the National Natural Science Foundation of China (Grant Nos10702034,10732050 and 90816006)the National Basic Research Program of China (973 Program 2007CB936803,2010CB832701)
文摘How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems.
基金The project supported by the National Natural Science Foundation of China
文摘The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation.
基金supported by the Special Funds for the National Basic Research Program of China (973 Project) (Grant No. 2010CB832702)the National Natural Science Foundation of China (Grant No. 90916027)also supported by NSAF (Grant No.10976004)
文摘In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
文摘Al,Ca,and Zn are representative commercial alloying elements for Mg alloys.To investigate the effects of these elements on the deformation and recrystallization behaviors of Mg alloys,we develop interatomic potentials for the Al-Ca,Al-Zn,Mg-Al-Ca and Mg-Al-Zn systems based on the second nearest-neighbor modified embedded-atom method formalism.The developed potentials describe structural,elastic,and thermodynamic properties of compounds and solutions of associated alloy systems in reasonable agreement with experimental data and higher-level calculations.The applicability of these potentials to the present investigation is confirmed by calculating the generalized stacking fault energy for various slip systems and the segregation energy on twin boundaries of the Mg-Al-Ca and Mg-Al-Zn alloys,accompanied with the thermal expansion coefficient and crystal structure maintenance of stable compounds in those alloys.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702100) in the Proof
文摘The influence of Cr doping on the surface characteristics of Ni metal, including the surface energy, work function,adsorption and dissociation, has been investigated by means of first-principles calculation based on density functional theory. The results reveal that with the increase in Cr doping amount, the surface energies for all(111),(110) and(100)surfaces increase, whereas the work functions of(111) and(100) surfaces decrease followed by an increase and that of(110) surface has been decreasing. On the typical Ni(111) and Ni-Cr(111) surfaces, the adsorption energies follow the sequence O > OH > H > H_2O, and the doping of Cr increases the chemical activity of surfaces leading to the improvement of adsorption energies. The H_2O dissociating to OH and H is easier than the subsequent OH dissociating to O and H. The addition of Cr into Ni surface decreases the energy barriers and significantly increases the reaction rate constants.
基金Project supported by the National Magnetic Confinement Fusion Energy Research Project of China(Grant No.2015GB118001)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT16RC(3)052)+1 种基金the National Basic Research Program of China(Grant No.2012CB619402)the NETL Project(Grant No.DE-FE0027776)
文摘A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.
基金supported by National Natural Science Foundation of China (GrantNos.11072026 and 10632020)the Fundamental Research Funds for the Central Universities, and finalized during a sabbatical leave of D.S. at the Graduate Institute of Ferrous Technology (G.I.F.T.) of POSTECHPohang, Korea as part of an International Outgoing Fellowship (Marie Curie Actions) of the 7th Programme of the European Commission
文摘The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant No.12272118)the National Key Research and Development Program of China (Grant No.2022YFE03030003)。
文摘The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.
基金financially supported by the Research Council of Norway under the M-HEAT project(No.294689)the HyLINE Project(No.294739)All simulation resources are provided by the Norwegian Metacenter for Computational Science(Nos.NN9110K and NN9391K).
文摘Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. U0734001 and 50772054)the Ministry of Science and Technology of China (Grant No. 2009CB929202)
文摘Atomistic simulation has been performed to investigate the dynamical and defect properties of multiferroic hexagonal YMnO3 with newly developed interaction potentials. Dynamical calculation reveals that phonon vibrations of hexagonal YMnO3 are quite different from those of orthorhombic YMnO3. Defect calculation finds that O Frenkel is the most probable intrinsic disorder, and Mn antisite defect is favorable to exist, especially for Mn ions entering the Y2 sites. It is also found that holes prefer to localize at O2sites rather than at Mn3+ sites, while the electron can be localized at the Mn3+ site. The disproportionation of Mn3+ ions is unlikely to occur in hexagonal YMnO3.
基金supported by National Nature Science Foundation of China(Nos.51161003 and 51561031)Nature Science Foundation of Guangxi Province(No.2018GXNSFAA138150)。
文摘The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreeme
基金supported by the State Key Lab of Urban Water Resource and Environment of Harbin Institute of Technology(No.ES202303)the National Natural Science Foundation of China(No.22203039).
文摘The prototypical E2 elimination and SN2 sub-stitution reactions between microsolvated fluoride and ethyl bromide show unexpected dynamic behaviors in mechanistic evolution driven by solvation and collision activation.Considering the steric effects,the gas-phase selectivity favors an E2 pathway barely dependent on collision energies.Remarkably,base solvation steers the reaction in an effective way toward substitution at a near-thermal energy,whereas the governing high-energy events retain elimination.Chemical dynamics simulations reproduce exper-imental findings and uncover a crucial solute-solvent coupling in determining such competing processes.Interestingly,collision activation can tune the underlying atomistic dynamics essentially in the reactant entrance channel and cause a mechanism shift.These features for the ubiquitous competing E2/SN2 dynamics remain quite unknown,providing unique insight into reaction selectivity for complex chemical networks.
基金the financial support from National Natural Science Foundation of China (Grants Nos.12325203,91963117,and 11921002)。
文摘Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.