使用SAC/SAC-CI方法,利用D95(d),6-311g**以及cc-PVTZ等基组,对B2分子的基态(X3Σg-)和第一激发态(A3Σu-)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d...使用SAC/SAC-CI方法,利用D95(d),6-311g**以及cc-PVTZ等基组,对B2分子的基态(X3Σg-)和第一激发态(A3Σu-)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X3Σg-),SAC-CI的GSUM方法对激发态(A3Σu-)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X3Σg-)和第一激发态(A3Σu-)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据吻合.展开更多
基于线偏振光在充有被极化的铷原子的气室内传播时,在磁场的作用下会发生法拉第旋转这一现象,实现了一种基于法拉第旋转检测的铷原子矢量磁力仪。分析了它的工作原理,并测试了它对不同磁场的响应。测试结果表明,磁力仪灵敏度为1pT/Hz,...基于线偏振光在充有被极化的铷原子的气室内传播时,在磁场的作用下会发生法拉第旋转这一现象,实现了一种基于法拉第旋转检测的铷原子矢量磁力仪。分析了它的工作原理,并测试了它对不同磁场的响应。测试结果表明,磁力仪灵敏度为1pT/Hz,测量范围为±60 n T,响应带宽为48 Hz。进一步研究了调制磁场和工作温度对铷原子磁力仪性能的影响,并提出了一些提高性能的方法。展开更多
文摘使用SAC/SAC-CI方法,利用D95(d),6-311g**以及cc-PVTZ等基组,对B2分子的基态(X3Σg-)和第一激发态(A3Σu-)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了D95(d)基组为3个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X3Σg-),SAC-CI的GSUM方法对激发态(A3Σu-)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X3Σg-)和第一激发态(A3Σu-)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据吻合.
文摘基于线偏振光在充有被极化的铷原子的气室内传播时,在磁场的作用下会发生法拉第旋转这一现象,实现了一种基于法拉第旋转检测的铷原子矢量磁力仪。分析了它的工作原理,并测试了它对不同磁场的响应。测试结果表明,磁力仪灵敏度为1pT/Hz,测量范围为±60 n T,响应带宽为48 Hz。进一步研究了调制磁场和工作温度对铷原子磁力仪性能的影响,并提出了一些提高性能的方法。