Chaos studies all that is messy, disorganized and incoherent;mathematically the chaos is a dynamic system governed by nonlinear differential equations. Chaos has an unpredictable behavior;its dynamical is very sensiti...Chaos studies all that is messy, disorganized and incoherent;mathematically the chaos is a dynamic system governed by nonlinear differential equations. Chaos has an unpredictable behavior;its dynamical is very sensitive to the initial conditions. Atypical chaotic system is the atmosphere;this limits the knowledge about its behavior;but with the advance in the computers, the results that are obtained with the chaos theory improved significantly;the description of atmosphera and its results have extended to other fields of the science, as the economy, health and others. The object of this work was to determine the atmospheric dynamics in the Riobamba city using the theory of chaos, with meteorological data of the meteorological station of the ESPOCH of one year (2010) of data that were processed with model TISEAN. The results determine a hyperchaotic system, according to the coefficients of Lyapunov.展开更多
This study attempts to investigate the interaction between lower and upper atmosphere, employing daily data of Total Ozone Column (TOC) and atmospheric parameter (cloud cover) over Nigeria from 1998-2012;in order to s...This study attempts to investigate the interaction between lower and upper atmosphere, employing daily data of Total Ozone Column (TOC) and atmospheric parameter (cloud cover) over Nigeria from 1998-2012;in order to study the dynamic effect of ozone on climate and vice versa. This is due to the fact that ozone and climate influence each other and the understanding of the dynamic effect of the interconnectivity is still an open research area. Monthly mean daily TOC and cloud cover data were obtained from the Earth Probe Total Ozone Mass Spectroscopy (EPTOMS) and the International Satellite Cloud Climatology Project (ISCCP)-D2 datasets respectively. Bivariate analysis and Mann Kendall trend tests were used in data analysis. MATLAB and ArcGIS software were employed in analyzing the data. Results reveal that TOC increased spatially from the coastal region to the north eastern region of the country. Seasonally, the highest value of TOC was observed at the peak of rainy season when cloud activity is very high, while the lowest value was recorded in dry season. These variations were attributed to rain producing mechanisms and atmospheric phenomena which influence the transport and distribution of ozone. Furthermore, the statistical analysis reveals significant relationship between TOC and low and middle cloud covers in contrast to high cloud cover. This relationship is consistent with previous studies using other atmospheric variables. This study has given scientific insight which is useful in understanding the coupling of the lower and upper atmosphere.展开更多
Compared with the fiber channel,the atmospheric channel offers the possibility of a broader geographical coverage and more flexible transmission for continuous-variable quantum key distribution(CVQKD).However,the fluc...Compared with the fiber channel,the atmospheric channel offers the possibility of a broader geographical coverage and more flexible transmission for continuous-variable quantum key distribution(CVQKD).However,the fluctuation of atmospheric conditions will lead to the loss of performance in atmospheric quantum communication.In this paper,we study how temperature affects atmospheric CVQKD.We mainly consider the temperature effects on the transmittance and interruption probability.From the numerical simulation analysis,it can be shown that the performance of atmospheric CVQKD is improved as temperature increases,with the other factors fixed.Moreover,the results in this work can be used to evaluate the feasibility of the experimental implementation of the atmospheric CVQKD protocols.展开更多
The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distr...The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.展开更多
文摘Chaos studies all that is messy, disorganized and incoherent;mathematically the chaos is a dynamic system governed by nonlinear differential equations. Chaos has an unpredictable behavior;its dynamical is very sensitive to the initial conditions. Atypical chaotic system is the atmosphere;this limits the knowledge about its behavior;but with the advance in the computers, the results that are obtained with the chaos theory improved significantly;the description of atmosphera and its results have extended to other fields of the science, as the economy, health and others. The object of this work was to determine the atmospheric dynamics in the Riobamba city using the theory of chaos, with meteorological data of the meteorological station of the ESPOCH of one year (2010) of data that were processed with model TISEAN. The results determine a hyperchaotic system, according to the coefficients of Lyapunov.
文摘This study attempts to investigate the interaction between lower and upper atmosphere, employing daily data of Total Ozone Column (TOC) and atmospheric parameter (cloud cover) over Nigeria from 1998-2012;in order to study the dynamic effect of ozone on climate and vice versa. This is due to the fact that ozone and climate influence each other and the understanding of the dynamic effect of the interconnectivity is still an open research area. Monthly mean daily TOC and cloud cover data were obtained from the Earth Probe Total Ozone Mass Spectroscopy (EPTOMS) and the International Satellite Cloud Climatology Project (ISCCP)-D2 datasets respectively. Bivariate analysis and Mann Kendall trend tests were used in data analysis. MATLAB and ArcGIS software were employed in analyzing the data. Results reveal that TOC increased spatially from the coastal region to the north eastern region of the country. Seasonally, the highest value of TOC was observed at the peak of rainy season when cloud activity is very high, while the lowest value was recorded in dry season. These variations were attributed to rain producing mechanisms and atmospheric phenomena which influence the transport and distribution of ozone. Furthermore, the statistical analysis reveals significant relationship between TOC and low and middle cloud covers in contrast to high cloud cover. This relationship is consistent with previous studies using other atmospheric variables. This study has given scientific insight which is useful in understanding the coupling of the lower and upper atmosphere.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505261)
文摘Compared with the fiber channel,the atmospheric channel offers the possibility of a broader geographical coverage and more flexible transmission for continuous-variable quantum key distribution(CVQKD).However,the fluctuation of atmospheric conditions will lead to the loss of performance in atmospheric quantum communication.In this paper,we study how temperature affects atmospheric CVQKD.We mainly consider the temperature effects on the transmittance and interruption probability.From the numerical simulation analysis,it can be shown that the performance of atmospheric CVQKD is improved as temperature increases,with the other factors fixed.Moreover,the results in this work can be used to evaluate the feasibility of the experimental implementation of the atmospheric CVQKD protocols.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505261).
文摘The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.