A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model (UH model). By assuming that there is part coupling effect between the plastic volumetric strain and ...A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model (UH model). By assuming that there is part coupling effect between the plastic volumetric strain and plastic shear strain, hardening parameters consisting of a coupled and an uncoupled components are adopted in this model. A unique feature of this model is that it can describe not only the conventional drained and undrained behaviors of soil, but also the stress-strain relationships of soil under partially drained conditions which can be volumetric compression or dilation. Adopting the asymptotic state concept, simple equations for estimating the limiting stress ratio under undrained or earth pressure at rest (i.e. K0) conditions are derived. The new model is relatively simple to be adopted in practice for two reasons. First, the same soil parameters as in Cam-clay model are used except the addition of one extra parameter, the stress ratio at the characteristic state. Second, all the parameters can be determined using conventional triaxial compression tests.展开更多
In this paper,the authors propose an adaptive Barrier-Lyapunov-Functions(BLFs)based control scheme for nonlinear pure-feedback systems with full state constraints.Due to the coexist of the non-affine structure and ful...In this paper,the authors propose an adaptive Barrier-Lyapunov-Functions(BLFs)based control scheme for nonlinear pure-feedback systems with full state constraints.Due to the coexist of the non-affine structure and full state constraints,it is very difficult to construct a desired controller for the considered system.According to the mean value theorem,the authors transform the pure-feedback system into a system with strict-feedback structure,so that the well-known backstepping method can be applied.Then,in the backstepping design process,the BLFs are employed to avoid the violation of the state constraints,and neural networks(NNs)are directly used to online approximate the unknown packaged nonlinear terms.The presented controller ensures that all the signals in the closed-loop system are bounded and the tracking error asymptotically converges to zero.Meanwhile,it is shown that the constraint requirement on the system will not be violated during the operation.Finally,two simulation examples are provided to show the effectiveness of the proposed control scheme.展开更多
This paper addresses the asymptotic control problem of uncertain multi-input and multi-output(MIMO)nonlinear systems.The considered MIMO systems contain unknown virtual control coefficients(UVCCs)and state constraints...This paper addresses the asymptotic control problem of uncertain multi-input and multi-output(MIMO)nonlinear systems.The considered MIMO systems contain unknown virtual control coefficients(UVCCs)and state constraints.Acreative Lyapunov function by associating with the lower bounds of UVCCs is presented to counteract the adverse effect deriving from UVCCs.The state constraints are ensured by utilising the barrier Lyapunov function.Moreover,the asymptotic tracking controller is recursively constructed by combining the backstepping technique with fuzzy logic systems.The remarkable character of the designed controller is that the asymptotic tracking performance can be achieved by introducing some smooth functions into adaptive backstepping procedure.In contrast to the existing results,the conditions on the UVCCs are relaxed.Finally,the new control design is illustrated by a practical example.展开更多
This paper develops fuzzy H∞ filter for state estimation approach for nonlinear discretetime systems with multiple time delays and unknown bounded disturbances. We design a stable fuzzy H∞ filter based on the Takagi...This paper develops fuzzy H∞ filter for state estimation approach for nonlinear discretetime systems with multiple time delays and unknown bounded disturbances. We design a stable fuzzy H∞ filter based on the Takagi-Sugeno (T-S) fuzzy model, which assures asymptotic stability and a prescribed H∞ index for the filtering error system. Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem. The LMI problem can be efficiently solved with global convergence using the interior point algorithm. Simulation exanples are provided to illustrate the design procedure of the proposed method.展开更多
A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very t...A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10672010 and 50479001)the National Earthquake Science Item (Grant No. 200808076)
文摘A new double hardening elasto-plastic model is proposed in this paper based on the existing unified hardening model (UH model). By assuming that there is part coupling effect between the plastic volumetric strain and plastic shear strain, hardening parameters consisting of a coupled and an uncoupled components are adopted in this model. A unique feature of this model is that it can describe not only the conventional drained and undrained behaviors of soil, but also the stress-strain relationships of soil under partially drained conditions which can be volumetric compression or dilation. Adopting the asymptotic state concept, simple equations for estimating the limiting stress ratio under undrained or earth pressure at rest (i.e. K0) conditions are derived. The new model is relatively simple to be adopted in practice for two reasons. First, the same soil parameters as in Cam-clay model are used except the addition of one extra parameter, the stress ratio at the characteristic state. Second, all the parameters can be determined using conventional triaxial compression tests.
基金supported in part by the National Natural Science Foundation of China under Grant No.62303278in part by the Taishan Scholar Project of Shandong Province of China under Grant No.tsqn201909078。
文摘In this paper,the authors propose an adaptive Barrier-Lyapunov-Functions(BLFs)based control scheme for nonlinear pure-feedback systems with full state constraints.Due to the coexist of the non-affine structure and full state constraints,it is very difficult to construct a desired controller for the considered system.According to the mean value theorem,the authors transform the pure-feedback system into a system with strict-feedback structure,so that the well-known backstepping method can be applied.Then,in the backstepping design process,the BLFs are employed to avoid the violation of the state constraints,and neural networks(NNs)are directly used to online approximate the unknown packaged nonlinear terms.The presented controller ensures that all the signals in the closed-loop system are bounded and the tracking error asymptotically converges to zero.Meanwhile,it is shown that the constraint requirement on the system will not be violated during the operation.Finally,two simulation examples are provided to show the effectiveness of the proposed control scheme.
基金supported in part by the National Natural Science Foundation of China under grant numbers 52171299 and 61803116,62173103in part by the Fundamental Research Funds for the Central Universities of China under grant number 3072022JC0402.
文摘This paper addresses the asymptotic control problem of uncertain multi-input and multi-output(MIMO)nonlinear systems.The considered MIMO systems contain unknown virtual control coefficients(UVCCs)and state constraints.Acreative Lyapunov function by associating with the lower bounds of UVCCs is presented to counteract the adverse effect deriving from UVCCs.The state constraints are ensured by utilising the barrier Lyapunov function.Moreover,the asymptotic tracking controller is recursively constructed by combining the backstepping technique with fuzzy logic systems.The remarkable character of the designed controller is that the asymptotic tracking performance can be achieved by introducing some smooth functions into adaptive backstepping procedure.In contrast to the existing results,the conditions on the UVCCs are relaxed.Finally,the new control design is illustrated by a practical example.
基金国家自然科学基金,Natural ScienceFoundation of Liaoning Province P.R.China
文摘This paper develops fuzzy H∞ filter for state estimation approach for nonlinear discretetime systems with multiple time delays and unknown bounded disturbances. We design a stable fuzzy H∞ filter based on the Takagi-Sugeno (T-S) fuzzy model, which assures asymptotic stability and a prescribed H∞ index for the filtering error system. Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem. The LMI problem can be efficiently solved with global convergence using the interior point algorithm. Simulation exanples are provided to illustrate the design procedure of the proposed method.
文摘A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.