期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
SOSNet:一种非对称编码器-解码器结构的非小细胞肺癌CT图像分割模型
1
作者
谢娟英
张凯云
《电子学报》
EI
CAS
CSCD
北大核心
2024年第3期824-837,共14页
非小细胞肺癌严重损害人类健康,早期非小细胞肺癌CT(Computed Tomography)图像中的肿瘤结节体积小,不易发现,极易造成漏诊和误诊.为了精确分割非小细胞肺癌CT图像中的小体积肿瘤结节,本文提出SOSNet(Small Object Segmentation Networks...
非小细胞肺癌严重损害人类健康,早期非小细胞肺癌CT(Computed Tomography)图像中的肿瘤结节体积小,不易发现,极易造成漏诊和误诊.为了精确分割非小细胞肺癌CT图像中的小体积肿瘤结节,本文提出SOSNet(Small Object Segmentation Networks)自动分割模型,利用ResNet(Residual Network)基础层和空洞卷积构造非对称编码器-解码器结构作为分割主网络,利用轴向取反注意力模块ARA(Axial Reverse Attention)逐步擦除背景中对分割有影响的结构,再使用结构细化模块SR(Structure Refinement)对主网络输出的粗略特征图进行结构细化,从而实现非小细胞肺癌肿瘤结节分割.在非小细胞肺癌公开数据集的实验测试表明,本文提出的小目标自动分割模型SOSNet可以有效分割出非小细胞肺癌CT图像中的小体积肿瘤结节,其mDice(mean-Dice)、mIoU(mean Intersection over Union)、Sensitivity、F1、Specificity、平均绝对误差MAE(Mean Absolute Error)均优于当前最先进的小目标分割模型CaraNet(Context Axial Reverse Attention Network).
展开更多
关键词
小目标分割
非小细胞肺癌
非对称编码器-解码器
结构细化
轴向取反注意力
CT图像
深度学习
卷积
下载PDF
职称材料
题名
SOSNet:一种非对称编码器-解码器结构的非小细胞肺癌CT图像分割模型
1
作者
谢娟英
张凯云
机构
陕西师范大学计算机科学学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2024年第3期824-837,共14页
基金
国家自然科学基金(No.62076159,No.12031010,No.61673251)
中央高校基本科研业务费项目(No.GK202105003)。
文摘
非小细胞肺癌严重损害人类健康,早期非小细胞肺癌CT(Computed Tomography)图像中的肿瘤结节体积小,不易发现,极易造成漏诊和误诊.为了精确分割非小细胞肺癌CT图像中的小体积肿瘤结节,本文提出SOSNet(Small Object Segmentation Networks)自动分割模型,利用ResNet(Residual Network)基础层和空洞卷积构造非对称编码器-解码器结构作为分割主网络,利用轴向取反注意力模块ARA(Axial Reverse Attention)逐步擦除背景中对分割有影响的结构,再使用结构细化模块SR(Structure Refinement)对主网络输出的粗略特征图进行结构细化,从而实现非小细胞肺癌肿瘤结节分割.在非小细胞肺癌公开数据集的实验测试表明,本文提出的小目标自动分割模型SOSNet可以有效分割出非小细胞肺癌CT图像中的小体积肿瘤结节,其mDice(mean-Dice)、mIoU(mean Intersection over Union)、Sensitivity、F1、Specificity、平均绝对误差MAE(Mean Absolute Error)均优于当前最先进的小目标分割模型CaraNet(Context Axial Reverse Attention Network).
关键词
小目标分割
非小细胞肺癌
非对称编码器-解码器
结构细化
轴向取反注意力
CT图像
深度学习
卷积
Keywords
small
object
segmentation
non-small
cell
lung
cancer
asymmetric
encoder
-
decoder
framework
struc⁃ture
refinement
axial
reverse
attention
CT
images
deep
learning
convolution
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TP391 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
SOSNet:一种非对称编码器-解码器结构的非小细胞肺癌CT图像分割模型
谢娟英
张凯云
《电子学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部