Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, effi...Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the entire database repeatedly, which is an obvious disadvantage. In this paper, an efficient incremental mining algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when incremental data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree and re-running frequent pattern growth (FP-growth). Keywords data mining - association rule mining - frequent pattern mining - incremental mining Supported by the National Basic Research 973 Program of China under Grant No.G1999032705.Xiu-Li Ma received the Ph.D. degree in computer science from Peking University in 2003. She is currently a postdoctoral researcher at National Lab on Machine Perception of Peking University. Her main research interests include data warehousing, data mining, intelligent online analysis, and sensor network.Yun-Hai Tong received the Ph.D. degree in computer software from Peking University in 2002. He is currently an assistant professor at School of Electronics Engineering and Computer Science of Peking University. His research interests include data warehousing, online analysis processing and data mining.Shi-Wei Tang received the B.S. degree in mathematics from Peking University in 1964. Now, he is a professor and Ph.D. su展开更多
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ...With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal...Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal graph association rules(TGARs)that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints.We introduce quality measures(e.g.,support,confidence,and diversification)to characterize meaningful TGARs that are useful and diversified.In addition,the proposed support metric is an upper bound for alternative metrics,allowing us to guarantee a superset of patterns.We extend conventional confidence measures in terms of maximal occurrences of TGARs.The diversification score strikes a balance between interestingness and diversity.Although the problem is NP-hard,we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph.We propose pruning strategies to filter TGARs that have low support or cannot make top-k as early as possible.Moreover,we design an auxiliary data structure to prune the TGARs that do not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for each extension in the search space.We experimentally verify the effectiveness,efficiency,and scalability of our algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications.展开更多
基于免疫原理,提出一种数据库入侵检测方法,利用SQL Server 2000的事件探查器完成了对历史审计数据和测试数据的采集,实现了基于免疫的数据库异常检测方法.为了验证提出算法的有效性,在相同测试集上,同基于关联规则的数据库异常检测和...基于免疫原理,提出一种数据库入侵检测方法,利用SQL Server 2000的事件探查器完成了对历史审计数据和测试数据的采集,实现了基于免疫的数据库异常检测方法.为了验证提出算法的有效性,在相同测试集上,同基于关联规则的数据库异常检测和基于序列模式的数据库异常检测的方法进行了实验数据比较,结果表明基于免疫的数据库入侵检测在降低漏报率和假报率,提高检测率和正确率方面优于其他两种方法,具有较好的性能.展开更多
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
Interaction detection in large-scale genetic asso- ciation studies has attracted intensive research interest, since many diseases have complex traits. Various approaches have been developed for finding significant gen...Interaction detection in large-scale genetic asso- ciation studies has attracted intensive research interest, since many diseases have complex traits. Various approaches have been developed for finding significant genetic interactions. In this article, we propose a novel framework SRMiner to detect interacting susceptible and protective genotype patterns. SR- Miner can discover not only probable combination of single nucleotide polymorphisms (SNPs) causing diseases but also the corresponding SNPs suppressing their pathogenic func- tions, which provides a better prospective to uncover the un- derlying relevance between genetic variants and complex dis- eases. We have performed extensive experiments on several real WeUcome Trust Case Control Consortium (WTCCC) datasets. We use the pathway-based and the protein-protein interaction (PPI) network-based evaluation methods to verify the discovered patterns. The results show that SRMiner successfully identifies many disease-related genes verified by the existing work. Furthermore, SRMiner can also infer some uncomfirmed but highly possible disease-related genes.展开更多
文摘Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the entire database repeatedly, which is an obvious disadvantage. In this paper, an efficient incremental mining algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when incremental data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree and re-running frequent pattern growth (FP-growth). Keywords data mining - association rule mining - frequent pattern mining - incremental mining Supported by the National Basic Research 973 Program of China under Grant No.G1999032705.Xiu-Li Ma received the Ph.D. degree in computer science from Peking University in 2003. She is currently a postdoctoral researcher at National Lab on Machine Perception of Peking University. Her main research interests include data warehousing, data mining, intelligent online analysis, and sensor network.Yun-Hai Tong received the Ph.D. degree in computer software from Peking University in 2002. He is currently an assistant professor at School of Electronics Engineering and Computer Science of Peking University. His research interests include data warehousing, online analysis processing and data mining.Shi-Wei Tang received the B.S. degree in mathematics from Peking University in 1964. Now, he is a professor and Ph.D. su
文摘With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
基金This work was partially supported by the National Key Research and Development Program(No.2018YFB1800203)National Natural Science Foundation of China(No.U19B2024)Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20210038).
文摘Discovering regularities between entities in temporal graphs is vital for many real-world applications(e.g.,social recommendation,emergency event detection,and cyberattack event detection).This paper proposes temporal graph association rules(TGARs)that extend traditional graph-pattern association rules in a static graph by incorporating the unique temporal information and constraints.We introduce quality measures(e.g.,support,confidence,and diversification)to characterize meaningful TGARs that are useful and diversified.In addition,the proposed support metric is an upper bound for alternative metrics,allowing us to guarantee a superset of patterns.We extend conventional confidence measures in terms of maximal occurrences of TGARs.The diversification score strikes a balance between interestingness and diversity.Although the problem is NP-hard,we develop an effective discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining TGARs is feasible over a temporal graph.We propose pruning strategies to filter TGARs that have low support or cannot make top-k as early as possible.Moreover,we design an auxiliary data structure to prune the TGARs that do not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for each extension in the search space.We experimentally verify the effectiveness,efficiency,and scalability of our algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications.
文摘基于免疫原理,提出一种数据库入侵检测方法,利用SQL Server 2000的事件探查器完成了对历史审计数据和测试数据的采集,实现了基于免疫的数据库异常检测方法.为了验证提出算法的有效性,在相同测试集上,同基于关联规则的数据库异常检测和基于序列模式的数据库异常检测的方法进行了实验数据比较,结果表明基于免疫的数据库入侵检测在降低漏报率和假报率,提高检测率和正确率方面优于其他两种方法,具有较好的性能.
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
文摘Interaction detection in large-scale genetic asso- ciation studies has attracted intensive research interest, since many diseases have complex traits. Various approaches have been developed for finding significant genetic interactions. In this article, we propose a novel framework SRMiner to detect interacting susceptible and protective genotype patterns. SR- Miner can discover not only probable combination of single nucleotide polymorphisms (SNPs) causing diseases but also the corresponding SNPs suppressing their pathogenic func- tions, which provides a better prospective to uncover the un- derlying relevance between genetic variants and complex dis- eases. We have performed extensive experiments on several real WeUcome Trust Case Control Consortium (WTCCC) datasets. We use the pathway-based and the protein-protein interaction (PPI) network-based evaluation methods to verify the discovered patterns. The results show that SRMiner successfully identifies many disease-related genes verified by the existing work. Furthermore, SRMiner can also infer some uncomfirmed but highly possible disease-related genes.