The industry-oriented-bilateral project ( "Environmental friendly strategy for Waste Management in India Utilising Cement and Concrete Production Technology" ) between India and Norway was established in 200...The industry-oriented-bilateral project ( "Environmental friendly strategy for Waste Management in India Utilising Cement and Concrete Production Technology" ) between India and Norway was established in 2009 and will continue to the end of 2011. It aims to further increase the utilisation of mineral wastes in Indian cement and concrete industry in an environmentally and scientifically sound way in order to ensure sustainable energy and resource management. The project intends to advance the state of the art regarding blended cement and concrete technology as well as provide practical solutions and guidelines. Emphasis are given to the synergies achieved by using ternary binder systems in concrete mixes as well as the use of appropriate admixtures in order to integrate certain waste materials at higher levels than today's practice. The prioritised materials are coal combustion residues,slag and C&D waste. The background,project concept and the current status are presented.展开更多
Delayed settling of the ash particles and poor drainage of water from the pond ash are the major problems faced during the hydraulic stowing of pond ash. In this study the effect of polymeric flocculant on settling of...Delayed settling of the ash particles and poor drainage of water from the pond ash are the major problems faced during the hydraulic stowing of pond ash. In this study the effect of polymeric flocculant on settling of the ash particles and drainage of water during pond ash stowing are investigated. In addition, the parameters, viz. drainage and absorption of water during pond ash stowing are quantified by stowing a mine goaf model with pond ash slurries of five different concentrations added with and without flocculant. The study revealed that addition of only 5 10 6 of Sodium Carboxymethyl Cellulose (Na-CMC) flocculant with the pond ash slurries during stowing offers best result in terms of quicker settling of the ash particles and enhanced water drainage from the hydraulically stowed pond ash. Besides, it resulted in drainage of more than 85% of the total water used in the initial 45 min of stowing. The improvement in drainage is caused due to coagulation and flocculation of the pond ash particles because of charge neutralization and particle-particle bridging. This study may provide a basis for estimating the drainage and absorption of water during the real pond ash stowing operation in underground mines.展开更多
This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the comp...This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio(CBR) tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%e45% and5%e20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy(SEM) and X-ray diffraction(XRD) analyses were carried out,respectively. The results obtained indicated a decrease in the maximum dry density(MDD) and a simultaneous increase in the optimum moisture content(OMC) with the addition of PA and RHA.Multiple linear regression analysis(MLRA) showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.展开更多
Recycling of industrial waste is one of the effective ways to overcome their disposal problem. Ash produced by thermal power plants and lime sludge produced by paper mills require huge disposal land and may create env...Recycling of industrial waste is one of the effective ways to overcome their disposal problem. Ash produced by thermal power plants and lime sludge produced by paper mills require huge disposal land and may create environmental problems such as dusting and leaching of harmful heavy metals. Stabilization of the ash can improve its engineering properties and address the environmental problems. This paper reports the laboratory test results of a Class F pond ash stabilized with lime(2%, 4%, 6% and 8% by weight)alone and in combination with lime sludge(5%, 10% and 15% by weight). The X-ray diffraction(XRD) and scanning electron micrograph(SEM) tests were also performed to identify the possible formation of crystalline phases after stabilization. The effects of lime sludge on the unsoaked and soaked bearing ratios of pond ash with different lime contents, after 7 d, 28 d and 45 d of curing, were observed. Test results indicated that the bearing ratio increased considerably up to a 4% lime content which can be taken as the optimum lime content. Further increase in lime content increased bearing ratio gradually but at a slower rate. The effect of lime sludge was more pronounced at the optimum lime content,particularly at a low curing period. Lime sludge improved the bearing ratio in soaked condition significantly. Leachate analysis of stabilized ash was performed using toxicity characteristic leaching procedure(TCLP-1311) method. The concentrations of toxic elements Zn, Cu, Cd, Ni and Cr in the stabilized mixes were lower than those in the unstabilized waste. The results indicated that the pond ash-lime-lime sludge mixes have potential application as road subbase material.展开更多
基金The Research Council of Norway,The Royal Norwegian Embassy New Delhi,Borregaard Industries Ltd.and Elkem AS for providing financial support to the Indo-Norwegian Bilateral initiative:the BILAT-INDIA project.
文摘The industry-oriented-bilateral project ( "Environmental friendly strategy for Waste Management in India Utilising Cement and Concrete Production Technology" ) between India and Norway was established in 2009 and will continue to the end of 2011. It aims to further increase the utilisation of mineral wastes in Indian cement and concrete industry in an environmentally and scientifically sound way in order to ensure sustainable energy and resource management. The project intends to advance the state of the art regarding blended cement and concrete technology as well as provide practical solutions and guidelines. Emphasis are given to the synergies achieved by using ternary binder systems in concrete mixes as well as the use of appropriate admixtures in order to integrate certain waste materials at higher levels than today's practice. The prioritised materials are coal combustion residues,slag and C&D waste. The background,project concept and the current status are presented.
文摘Delayed settling of the ash particles and poor drainage of water from the pond ash are the major problems faced during the hydraulic stowing of pond ash. In this study the effect of polymeric flocculant on settling of the ash particles and drainage of water during pond ash stowing are investigated. In addition, the parameters, viz. drainage and absorption of water during pond ash stowing are quantified by stowing a mine goaf model with pond ash slurries of five different concentrations added with and without flocculant. The study revealed that addition of only 5 10 6 of Sodium Carboxymethyl Cellulose (Na-CMC) flocculant with the pond ash slurries during stowing offers best result in terms of quicker settling of the ash particles and enhanced water drainage from the hydraulically stowed pond ash. Besides, it resulted in drainage of more than 85% of the total water used in the initial 45 min of stowing. The improvement in drainage is caused due to coagulation and flocculation of the pond ash particles because of charge neutralization and particle-particle bridging. This study may provide a basis for estimating the drainage and absorption of water during the real pond ash stowing operation in underground mines.
文摘This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio(CBR) tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%e45% and5%e20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy(SEM) and X-ray diffraction(XRD) analyses were carried out,respectively. The results obtained indicated a decrease in the maximum dry density(MDD) and a simultaneous increase in the optimum moisture content(OMC) with the addition of PA and RHA.Multiple linear regression analysis(MLRA) showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.
文摘Recycling of industrial waste is one of the effective ways to overcome their disposal problem. Ash produced by thermal power plants and lime sludge produced by paper mills require huge disposal land and may create environmental problems such as dusting and leaching of harmful heavy metals. Stabilization of the ash can improve its engineering properties and address the environmental problems. This paper reports the laboratory test results of a Class F pond ash stabilized with lime(2%, 4%, 6% and 8% by weight)alone and in combination with lime sludge(5%, 10% and 15% by weight). The X-ray diffraction(XRD) and scanning electron micrograph(SEM) tests were also performed to identify the possible formation of crystalline phases after stabilization. The effects of lime sludge on the unsoaked and soaked bearing ratios of pond ash with different lime contents, after 7 d, 28 d and 45 d of curing, were observed. Test results indicated that the bearing ratio increased considerably up to a 4% lime content which can be taken as the optimum lime content. Further increase in lime content increased bearing ratio gradually but at a slower rate. The effect of lime sludge was more pronounced at the optimum lime content,particularly at a low curing period. Lime sludge improved the bearing ratio in soaked condition significantly. Leachate analysis of stabilized ash was performed using toxicity characteristic leaching procedure(TCLP-1311) method. The concentrations of toxic elements Zn, Cu, Cd, Ni and Cr in the stabilized mixes were lower than those in the unstabilized waste. The results indicated that the pond ash-lime-lime sludge mixes have potential application as road subbase material.