The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an...The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.展开更多
基金supported by the National Natural Science Foundation of China(62104066,52221001,62090035,U19A2090,U22A20138,52372146,and 62101181)the National Key R&D Program of China(2022YFA1402501,2022YFA1204300)+6 种基金the Natural Science Foundation of Hunan Province(2021JJ20016)the Science and Technology Innovation Program of Hunan Province(2021RC3061)the Key Program of Science and Technology Department of Hunan Province(2019XK2001,2020XK2001)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2020WNLOKF016)the Open Project Program of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(22ZS01)the Project funded by China Postdoctoral Science Foundation(2023TQ0110)the Innovation Project of Optics Valley Laboratory(OVL2023ZD002).
文摘The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.