期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
人工智能系统对于儿童骨龄评价效率提升的研究 被引量:10
1
作者 白凤森 袁新宇 +3 位作者 马毅民 刘力 刘华 程晓光 《医学影像学杂志》 2021年第12期2111-2113,2140,共4页
目的比较人工智能(artificial intelligence,AI)骨龄评价系统辅助儿科放射医师工作前后的优劣,探讨AI在儿童骨龄临床应用中的价值。方法选取因矮小、性早熟及预测身高等生长发育问题就诊于我院的1303例患儿左手腕X线摄影片,以两位高年... 目的比较人工智能(artificial intelligence,AI)骨龄评价系统辅助儿科放射医师工作前后的优劣,探讨AI在儿童骨龄临床应用中的价值。方法选取因矮小、性早熟及预测身高等生长发育问题就诊于我院的1303例患儿左手腕X线摄影片,以两位高年资医师经G-P图谱法评估骨龄结果的平均值为参考标准,另选三位儿科放射医师在无AI辅助下进行首次骨龄评价并记录阅片时间。4周脱敏期后,在AI辅助下对相同X线摄影片进行再次骨龄评价并记录阅片时间。比较前后两次骨龄评价的准确性与耗时。骨龄准确性比较采用均方根误差(root mean square error,RMSE)与绝对误差均值(mean absolute deviation,MAD);阅片时间比较采用配对t检验。结果在AI辅助下,三位放射科医师的RMSE值均有不同程度下降(分别从0.76降至0.32;0.57降至0.50;0.57降至0.45),AI辅助骨龄评估的准确度较前提高(分别从81%升至94.4%;86%升至91.6%;87%升至93%)。阅片时间从平均102 s缩减至53 s(P<0.001)。结论AI辅助骨龄评价系统可提高医师工作效率,显著减少阅片时间。减少观察者间主观因素影响,提高阅片一致性,提高骨龄评价准确度,降低RMSE。 展开更多
关键词 儿童 骨龄 人工智能 X线摄影
下载PDF
安全型煤质检测技术在上湾采样系统的应用 被引量:6
2
作者 马平 赵俊达 石鹏 《煤炭加工与综合利用》 CAS 2022年第8期85-88,共4页
针对目前煤质在线检测普遍采用的有源检测技术中存在放射源管理难度较大、管理成本较高、存在安全隐患等问题,以神东上湾选煤厂快速装车自动采样系统为工程背景,采用一种新型安全型煤质在线无源检测技术,其特点在于采用无源人工射线吸... 针对目前煤质在线检测普遍采用的有源检测技术中存在放射源管理难度较大、管理成本较高、存在安全隐患等问题,以神东上湾选煤厂快速装车自动采样系统为工程背景,采用一种新型安全型煤质在线无源检测技术,其特点在于采用无源人工射线吸收法及非接触式测量,实现对原煤灰分、硫分以及发热量实时检测。并与煤质在线有源检测技术进行性能比对,讨论实际应用的结果及存在的问题。研究表明,该新型安全型煤质在线无源检测技术具有安全可靠,管理维护方便,检测数据更加及时、准确、稳定等特点。 展开更多
关键词 灰分仪 自动采样 煤质在线检测 人工射线 有源 无源
下载PDF
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
3
作者 Mazin Abed Mohammed Karrar Hameed Abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine X-ray images feature transfer learning
下载PDF
基于调查问卷分析国内儿童骨龄评估现状及发展趋势 被引量:2
4
作者 白凤森 袁新宇 +4 位作者 马毅民 杨洋 闫淯淳 辛海燕 程晓光 《中华放射学杂志》 CAS CSCD 北大核心 2024年第2期225-228,共4页
目的基于调查问卷分析国内儿童骨龄评估的现状, 特别是人工智能(AI)辅助骨龄评价系统在临床中的应用。方法该研究为断面研究。通过文献法和专家访谈法自行定制调查问卷, 全卷包括22个问题, 通过微信小程序问卷星的形式发布于多个协会医... 目的基于调查问卷分析国内儿童骨龄评估的现状, 特别是人工智能(AI)辅助骨龄评价系统在临床中的应用。方法该研究为断面研究。通过文献法和专家访谈法自行定制调查问卷, 全卷包括22个问题, 通过微信小程序问卷星的形式发布于多个协会医师群, 以放射科及儿科医师为主, 并委托其在医院内开展调查。汇总并分析各类问题的结果, 计数资料的比较采用χ^(2)检验。结果共回收有效调查问卷450份, 涵盖162所医疗机构, 覆盖26个省、自治区、直辖市, 其中232份(51.6%)来自87所(53.7%)三级医院, 218份(48.4%)来自75所(46.3%)二级医院。调查对象中115人(25.6%)为高级职称, 137人(30.4%)为中级职称, 198人(44.0%)为初级职称。75.9%(66/87)的三级医疗机构和26.7%(20/75)的二级医疗机构开展了儿童骨龄测量, 差异有统计学意义(χ^(2)=39.1, P<0.001)。骨龄评估时以左手腕摄片为主(76.0%, 123/162), 采用图谱法评估的机构占72.8%(118/162)、计分法的机构占17.9%(29/162)。认为在骨龄评估时应使用AI技术辅助者占98.4%(443/450), 但仅有9.3%(15/162)的医疗机构使用AI辅助技术。结论目前骨龄评估已经在医疗机构中广泛开展, 但存在检查方法不规范、评估标准不统一、评估结果欠精确问题。广大医师对AI技术辅助诊断存在期望, 但使用者较少。 展开更多
关键词 儿童 年龄测定 骨骼 人工智能 X线
原文传递
A high performance gas–liquid two-phase flow meter based on gamma-ray attenuation and scattering 被引量:2
5
作者 G. H. Roshani E. Nazemi 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第11期271-279,共9页
The ability to precisely estimate the void fraction of multiphase flow in a pipe is very important in the petroleum industry. In this paper, an approach based on our previous works is proposed for predicting the void ... The ability to precisely estimate the void fraction of multiphase flow in a pipe is very important in the petroleum industry. In this paper, an approach based on our previous works is proposed for predicting the void fraction independent of flow regime and liquid phase density changes in gas–liquid two-phase flows. Implemented technique is a combination of dual modality densitometry and multi-beam gamma-ray attenuation techniques. The detection system is comprised of a single energy fan beam,two transmission detectors, and one scattering detector. In this work, artificial neural network(ANN) was also implemented to predict the void fraction percentage independent of the flow regime and liquid phase density changes. Registered counts in three detectors and void fraction percentage were utilized as the inputs and output of ANN, respectively. By applying the proposed methodology, the void fraction was estimated with a mean relative error of less than just 1.2480%. 展开更多
关键词 GAMMA-ray Transmission and SCATTERING artificial neural network Density INDEPENDENT Flow regime INDEPENDENT VOID FRACTION
下载PDF
210例无积水肾结石微创治疗的疗效观察 被引量:4
6
作者 王佳荣 彭洪涛 +3 位作者 赵春利 张颖 戎红旗 李梦旭 《临床泌尿外科杂志》 2013年第7期529-532,共4页
目的:探讨经皮肾微创治疗无积水肾结石患者的临床疗效。方法:回顾性分析2009年8月~2011年3月我院采用经皮肾镜取石术微创治疗210例无积水肾结石患者。改进人工肾积水的方法,行患侧输尿管逆行插入双J管,留置尿管,利用膀胱持续灌注通过双... 目的:探讨经皮肾微创治疗无积水肾结石患者的临床疗效。方法:回顾性分析2009年8月~2011年3月我院采用经皮肾镜取石术微创治疗210例无积水肾结石患者。改进人工肾积水的方法,行患侧输尿管逆行插入双J管,留置尿管,利用膀胱持续灌注通过双J逆流制造人工肾积水;超声联合X线引导下穿刺目标肾盏,建立经皮肾通道行微创经皮肾镜取石术。对手术时间、结石清除率、手术并发症等临床资料进行分析。结果:208例患者均1期穿刺成功,204例成功施行1期单通道取石,4例完全性鹿角型结石患者,因结石较大,患者年龄较大,存在基础疾病,手术时间超过2h,改为2期手术取石;2例患者术中出血穿刺失败,中转开放手术。195例患者1期1次手术取净结石;3例患者2次经皮肾镜取石术取净结石;2例患者残留结石配合ESWL加药物排石治疗,术后1~3个月复查无结石残留,总结石清除率95.2%(200/210)。手术时间60~130min,平均75min。3例患者术中出血较多,输血400~600ml。无气胸、周围脏器副损伤等严重并发症发生。结论:采用改进制造人工肾积水的方法,在超声联合X线引导下行微创经皮肾镜取石术,治疗无积水肾结石,具有穿刺成功率高、手术时间短、结石清除率高、手术并发症少等优点,是微创治疗无积水肾结石的首选方法。 展开更多
关键词 经皮肾镜取石术 无积水肾结石 微创取石术 人工肾积水 B超 X线
原文传递
Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images
7
作者 Vinayak Sharma Nillmani +1 位作者 Sachin Kumar Gupta Kaushal Kumar Shukla 《Intelligent Medicine》 EI CSCD 2024年第2期104-113,共10页
Objective Tuberculosis(TB)is among the most frequent causes of infectious-disease-related mortality.Despite being treatable by antibiotics,tuberculosis often goes misdiagnosed and untreated,especially in rural and low... Objective Tuberculosis(TB)is among the most frequent causes of infectious-disease-related mortality.Despite being treatable by antibiotics,tuberculosis often goes misdiagnosed and untreated,especially in rural and low-resource areas.Chest X-rays are frequently used to aid diagnosis;however,this presents additional challenges because of the possibility of abnormal radiological appearance and a lack of radiologists in areas where the infection is most prevalent.Implementing deep-learning-based imaging techniques for computer-aided diagnosis has the potential to enable accurate diagnoses and lessen the burden on medical specialists.In the present work,we aimed to develop deep-learning-based segmentation and classification models for accurate and precise detection of tuberculosis in chest X-ray images,with visualization of infection using gradient-weighted class activation mapping(Grad-CAM)heatmaps.Methods First,we trained the UNet segmentation model using 704 chest X-ray radiographs taken from the Montgomery County and Shenzhen Hospital datasets.Next,we implemented the trained UNet model on 1,400 tuberculosis and control chest X-ray scans to segment the lung region.The images were taken from the National Institute of Allergy and Infectious Diseases(NIAID)TB portal program dataset.Then,we applied the deep learning Xception model to classify the segmented lung region into tuberculosis and normal classes.We further investigated the visualization capabilities of the model using Grad-CAM to view tuberculosis abnormalities in chest X-rays and discuss them from radiological perspectives.Results For segmentation by the UNet model,we achieved accuracy,Jaccard index,Dice coefficient,and area under the curve(AUC)values of 96.35%,90.38%,94.88%,and 0.99,respectively.For classification by the Xception model,we achieved classification accuracy,precision,recall,F1-score,and AUC values of 99.29%,99.30%,99.29%,99.29%,and 0.999,respectively.The Grad-CAM heatmap images from the tuberculosis class showed similar heatmap patterns,where l 展开更多
关键词 TUBERCULOSIS artificial intelligence Deep learning SEGMENTATION Classification Chest X-ray
原文传递
人工智能影像组学辅助X射线诊断腰椎骨质疏松性椎体压缩性骨折的效能
8
作者 韩康恩 王洪伟 +4 位作者 顾洪闻 胡寅 唐世磊 张智昊 于海龙 《局解手术学杂志》 2024年第7期579-583,共5页
目的探讨人工智能影像组学辅助X射线诊断腰椎骨质疏松性椎体压缩性骨折(OVCF)的效能。方法收集北部战区总医院经MRI诊断为腰椎OVCF的455例患者的临床资料。将患者分为训练组(n=364)和验证组(n=91),提取X射线片,进行图像勾画、特征提取... 目的探讨人工智能影像组学辅助X射线诊断腰椎骨质疏松性椎体压缩性骨折(OVCF)的效能。方法收集北部战区总医院经MRI诊断为腰椎OVCF的455例患者的临床资料。将患者分为训练组(n=364)和验证组(n=91),提取X射线片,进行图像勾画、特征提取、数据分析,应用人工智能影像组学深度学习并建立OVCF的诊断模型。通过受试者工作特征(ROC)曲线、曲线下面积(AUC)、校准曲线及决策曲线分析(DCA)验证模型有效性后,对比人工阅片、模型阅片、模型辅助人工阅片诊断OVCF的效能。结果ROC曲线、AUC、校准曲线证明,模型具有良好的区分度和校准度,诊断性能优异;DCA证明模型临床净收益较高。人工阅片组诊断效能:准确率0.89,召回率0.62;模型阅片组诊断效能:准确率0.93,召回率0.86,模型诊断表现出良好的预测性,明显优于人工阅片组;模型辅助人工阅片组诊断效能:准确率0.92,召回率0.72,模型辅助人工阅片组召回率高于人工阅片组,但低于模型阅片组,表明该模型具有良好的诊断能力。结论本研究基于人工智能影像组学建立的OVCF诊断模型效能达到理想水平,诊断效能优于人工阅片,可用于辅助X射线诊断早期OVCF。 展开更多
关键词 影像组学 人工智能 X射线 骨质疏松性椎体压缩性骨折
下载PDF
AgTFSI Pretreated Li Anode in LiI-Mediated Li-O_(2)Battery:Enabling Lithiophilic Solid Electrolyte Interphase Generation to Suppress the Redox Shuttling
9
作者 Yuqing Zhang Qian Chen +5 位作者 Dan Li Shuang Qi Yulong Liu Jia Liu Haiming Xie Jiefang Zhu 《CCS Chemistry》 CSCD 2024年第10期2400-2410,共11页
Although lithium iodide(LiI)as a redox mediator(RM)can decrease the overpotential in Li-O_(2)batteries,the stability of the Li anode is still one critical issue due to the redox shuttling.Here,we firstly present a nov... Although lithium iodide(LiI)as a redox mediator(RM)can decrease the overpotential in Li-O_(2)batteries,the stability of the Li anode is still one critical issue due to the redox shuttling.Here,we firstly present a novel approach for generating Ag and LiTFSI enriched Li anode(designated as ALE@Li anode)via a spontaneous substitution between pure Li and bis(trifluoromethanesulfonyl)imide silver,in a LiI-participated Li-O_(2)cell.It can induce the generation of a lithiophilic solid electrolyte interphase(SEI)enriched with Ag,F,and N species(e.g.,Ag_(2)O,Li-Ag alloy,LiF,and Li_(3)N)during cell operation,which contributes to promoting the electrochemical performance through the shuttling inhibition.Compared to a cell with a bare Li anode,the one with as-prepared ALE@Li anode shows an enhanced cyclability,a considerable rate capability,and a good reversibility.In addition,a synchrotron X-ray computed tomography technique is employed to investigate the inhibition mechanism for shuttling effect by monitoring the morphological evolution on the cell interfaces.Therefore,this work highlights the deliberate design in the modified Li anode in an easy-to-operate and cost-effective way as well as providing guidance for the construction of artificial SEI layers to suppress the redox shuttling of RMs in Li-O_(2)batteries. 展开更多
关键词 redox shuttling modified Li anode artificial SEI layer synchrotron X-ray computed tomography Li-O_(2)batteries
原文传递
基于人工智能的骨龄辅助评价系统对四川地区完全性生长激素缺乏症患儿骨龄研究 被引量:3
10
作者 许可 宁刚 《中华妇幼临床医学杂志(电子版)》 CAS 2022年第4期449-459,共11页
目的探讨采用基于"人工智能(AI)的骨龄辅助评价系统(上海初云医疗科技有限公司与四川大学华西第二医院合作开发)"(以下简称为AI系统)对完全性生长激素缺乏症(CGHD)患儿诊断及骨龄评价准确性。方法选择2014年7月至2019年11月,... 目的探讨采用基于"人工智能(AI)的骨龄辅助评价系统(上海初云医疗科技有限公司与四川大学华西第二医院合作开发)"(以下简称为AI系统)对完全性生长激素缺乏症(CGHD)患儿诊断及骨龄评价准确性。方法选择2014年7月至2019年11月,于四川大学华西第二医院确诊的66例来自四川地区CGHD患儿为研究对象,纳入研究组。选择同期于病例收集医院儿童保健科进行骨龄测定的67例来自四川地区身高达标儿童作为对照,纳入对照组。对每例受试儿进行左手腕关节正位X射线摄片骨龄测定,由2位医师采用《TW_(2)骨龄评分法中国未成年人南方标准》(以下简称为TW_(2)CHN)》与《TW_(3)骨龄评分法标准》(以下简称为TW_(3)),盲法评价受试儿TW_(2)CHN-桡、尺、掌指骨(RUS)与TW_(2)CHN-腕骨(carpal)、TW_(2)CHN-20、TW_(3)-RUS及TW_(3)-carpal骨龄(以下简称为5种传统骨龄),以及以同性别、年龄身高达标儿童5种传统骨龄为标准,计算受试儿5种传统骨龄百分位数。同时,采用AI系统分别对每例受试儿采取TW_(2)CHN与TW_(3)法,评价其AI-TW_(2)CHN-RUS、AI-TW_(2)CHN-carpal、AI-TW_(2)CHN-20、AI-TW_(3)-RUS及AI-TW_(3)-carpal骨龄(以下简称为5种AI骨龄)及其相应百分位数。以上述5种传统骨龄+5种AI骨龄(以下简称为10种骨龄)相应的P50、P25、P10、P3值(统称为Pn值)作为诊断CGHD患儿临界值,分别计算其诊断CGHD患儿的敏感度、特异度、约登(Youden)指数、准确率、阳性似然比、阴性似然比、阳性预测值、阴性预测值。采用Kappa值评价2组受试儿5种传统骨龄百分位数与对应的5种AI骨龄百分位数评价结果的一致性,以及2位医师对2组受试儿TW_(2)CHN-RUS骨龄百分位数评价结果一致性。绘制上述10种骨龄百分位数诊断CGHD患儿的受试者工作特征(ROC)曲线,并计算曲线下面积(AUC)。采用配对t检验,对2组受试儿TW_(2)CHN骨龄与TW_(3)骨龄进行比较。本研究遵循的程序符� 展开更多
关键词 侏儒症 垂体性 骨骼年龄测定 生长激素 人工智能 体层摄影术 X线 四川地区 儿童
原文传递
Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks 被引量:3
11
作者 Ruaa A.Al-Falluji Zainab Dalaf Katheeth Bashar Alathari 《Computers, Materials & Continua》 SCIE EI 2021年第2期1301-1313,共13页
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)an... The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection. 展开更多
关键词 COVID-19 artificial intelligence convolutional neural network chest x-ray images Resnet18 model
下载PDF
人工智能技术在口腔颌面部X线及计算机断层扫描影像图像处理中的应用 被引量:3
12
作者 毛映 赵绿扬 龙洁 《口腔颌面外科杂志》 CAS 2022年第2期125-128,共4页
随着数字医学和精准治疗的大量临床实践,人工智能(artificial intelligence,AI)在口腔临床医学领域的研究与应用日益广泛。X线及计算机断层扫描(computed tomography,CT)是口腔疾病的常规检查手段,将其图像与AI相结合,通过分析大量数据... 随着数字医学和精准治疗的大量临床实践,人工智能(artificial intelligence,AI)在口腔临床医学领域的研究与应用日益广泛。X线及计算机断层扫描(computed tomography,CT)是口腔疾病的常规检查手段,将其图像与AI相结合,通过分析大量数据,最终可借助基于机器学习的数据驱动分析算法来支持临床诊断和决策,可辅助建立合适的治疗计划。诸多研究表明,基于AI的程序系统性能非常出色,其准确性接近甚至超过经过系统培训的专业人员。本文概述了AI在口腔颌面部X线及CT影像图像处理方面的现有应用及研究进展,以期为口腔疾病的预测、诊断、治疗及预后评估提供新思路。 展开更多
关键词 人工智能 机器学习 X线 计算机断层扫描
下载PDF
经胸片预训练的膝关节X线深度学习模型在骨质疏松诊断中的应用 被引量:1
13
作者 李林斌 张涵 +4 位作者 殷民月 朱嘉诚 朱锦舟 何劲 徐中华 《中国医疗设备》 2023年第11期16-21,共6页
目的基于膝关节X线图像,采用深度卷积神经网络和迁移学习方法构建模型,以探讨其在骨质疏松诊断中的应用效果。方法收集江苏大学附属金坛医院的膝关节X线正位片,按比例8∶2分为训练集(400张)与内部验证集(100张)。从ImageNet网站上选取Re... 目的基于膝关节X线图像,采用深度卷积神经网络和迁移学习方法构建模型,以探讨其在骨质疏松诊断中的应用效果。方法收集江苏大学附属金坛医院的膝关节X线正位片,按比例8∶2分为训练集(400张)与内部验证集(100张)。从ImageNet网站上选取ResNet、Xception、NASNet及EfficientNet 4个深度卷积神经网络,并冻结其首次预训练的参数,作为单次训练组的模型框架;从Kermany-Chest X-Ray2017胸片数据集随机选取5856张图像,对这4个神经网络进行二次预训练,作为二次训练组的模型框架。分别利用两组模型框架针对金坛医院的膝关节X线图像进行目标训练、构建骨质疏松的分类模型。从Wani-Knee X-Ray2021数据集随机选取85张图像作为外部测试集。根据模型在内部验证与外部测试集中的表现评价其分类能力。结果二次训练组的模型准确度均高于单次训练组。4个深度卷积神经网络中,EfficientNet模型性能显著优于另外3个模型。二次训练组的EfficientNet模型在内部验证集中准确度为0.918,F1值为0.918,受试者工作特征曲线下面积(Area Under Curve,AUC)为0.932;在外部测试集中准确度为0.824,F1值为0.848,AUC为0.846。结论经胸片二次预训练建立的膝关节X线深度学习模型,在骨质疏松分类应用中,优于单次预训练模型。使用深度卷积神经网络迁移学习技术有助于小样本数据集更准确地进行分类、预测等任务。 展开更多
关键词 骨质疏松 深度学习 人工智能 预训练 迁移学习 X线
下载PDF
股骨头坏死及髋关节置换后髋关节解剖参数变化的10年跟踪 被引量:2
14
作者 宋雅伟 张曦元 戎科 《中国组织工程研究》 CAS CSCD 2013年第13期2313-2319,共7页
背景:目前国内对股骨近端解剖参数特点的研究仅局限于普通国人,而对某些特殊群体关于此方面的研究较少。目的:对1例因右侧股骨头坏死而行人工髋关节置换的运动员进行为期10年的跟踪调查,进行健侧与患侧,健侧与普通国人的髋关节参数对比... 背景:目前国内对股骨近端解剖参数特点的研究仅局限于普通国人,而对某些特殊群体关于此方面的研究较少。目的:对1例因右侧股骨头坏死而行人工髋关节置换的运动员进行为期10年的跟踪调查,进行健侧与患侧,健侧与普通国人的髋关节参数对比。方法:2001至2011年在医院对观察对象进行骨盆平片的X射线片拍摄。拍摄时患者仰卧于摄影台上,双下肢标准中立位,紧贴X射线片,摄影距离100cm,以小转子水平为中心拍摄骨盆平片。要求股骨内旋,使股骨颈处在冠状面,于股骨颈纵轴平行位摄片。对X射线片上髋关节的各解剖参数进行测量,将数据导入SPSS16.0软件,进行方差分析、相关分析以及主成分贡献率分析。结果与结论:长期职业训练使受试者髋关节负荷严重增加,其股骨头所承受的压缩应力也远超普通人。患侧偏心距偏小,使关节周围软组织收缩乏力。应注意维持和恢复这些变形的部位。髋关节置换后的牵引使中心边缘角(CE角)有所恢复,但由于长期拄拐行走,患侧受压小于常人,患侧下肢重力自然牵引所致,要注意对患侧髋臼相对位置的恢复。由于患侧股骨头坏死,超载负荷区出现股骨头塌陷,关节腔隙减小,骨盆高度明显下降,手术后健侧股骨头与髋臼相对位置有所恢复,但患侧相对位置差异更为明显。 展开更多
关键词 骨关节植入物 人工假体 股骨头坏死 髋关节 X射线 跟踪调查 解剖参数 颈干角 CE角 AC 国家自然科学基金
下载PDF
Multi-Label Chest X-Ray Classification via Deep Learning
15
作者 Aravind Sasidharan Pillai 《Journal of Intelligent Learning Systems and Applications》 2022年第4期43-56,共14页
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specif... In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research. 展开更多
关键词 Data Science Deep Learning X-ray Machine Learning artificial Intelligence Health Care CNN Neural Network
下载PDF
Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
16
作者 JoséEscorcia-Gutierrez Margarita Gamarra +3 位作者 Roosvel Soto-Diaz Safa Alsafari Ayman Yafoz Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2023年第6期5255-5270,共16页
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin... A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%. 展开更多
关键词 artificial intelligence chest X-ray COVID-19 optimized synergic deep learning PREPROCESSING public health
下载PDF
Soft X ray Diagnosis on Seed Development and Observation on Seed Germination and Seedling Growth in Artificial Hybridization in Cunninghamia and Cryptomeria 被引量:1
17
作者 李文钿 奇文清 +1 位作者 成小飞 胡适宜 《Acta Botanica Sinica》 CSCD 1999年第7期690-694,共5页
An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were ... An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria. 展开更多
关键词 Cunninghamia CRYPTOMERIA artificial hybridization Soft X ray
下载PDF
An Efficient Method for Covid-19 Detection Using Light Weight Convolutional Neural Network
18
作者 Saddam Bekhet Monagi H.Alkinani +1 位作者 Reinel Tabares-Soto M.Hassaballah 《Computers, Materials & Continua》 SCIE EI 2021年第11期2475-2491,共17页
The COVID-19 pandemic is a significant milestone in the modern history of civilization with a catastrophic effect on global wellbeing and monetary.The situation is very complex as the COVID-19 test kits are limited,th... The COVID-19 pandemic is a significant milestone in the modern history of civilization with a catastrophic effect on global wellbeing and monetary.The situation is very complex as the COVID-19 test kits are limited,therefore,more diagnostic methods must be developed urgently.A significant initial step towards the successful diagnosis of the COVID-19 is the chest X-ray or Computed Tomography(CT),where any chest anomalies(e.g.,lung inflammation)can be easily identified.Most hospitals possess X-ray or CT imaging equipments that can be used for early detection of COVID-19.Motivated by this,various artificial intelligence(AI)techniques have been developed to identify COVID-19 positive patients using the chest X-ray or CT images.However,the advance of these AI-based systems and their highly tailored results are strongly bonded to high-end GPUs,which is not widely available in several countries.This paper introduces a technique for early COVID-19 diagnosis based on medical experience and light-weight Convolutional Neural Networks(CNNs),which does not require a custom hardware to run compared to currently available CNN models.The proposed deep learning model is built carefully and fine-tuned by removing all unnecessary parameters and layers to achieve the light-weight attribute that could run smoothly on a normal CPU(0.54%of AlexNet parameters).This model is highly beneficial for countries where high-end GPUs are luxuries.Experimental outcomes on some new benchmark datasets shows the robustness of the proposed technique robustness in recognizing COVID-19 with 96%accuracy. 展开更多
关键词 artificial intelligence COVID-19 chest CT chest X-ray deep learning
下载PDF
Data-driven prediction of plate velocities and plate deformation of explosive reactive armor
19
作者 Marvin Becker Andreas Klavzar +1 位作者 Thomas Wolf Melissa Renck 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第12期2141-2149,共9页
Explosive reactive armor(ERA)is currently being actively developed as a protective system for mobile devices against ballistic threats such as kinetic energy penetrators and shaped-charge jets.Considering mobility,the... Explosive reactive armor(ERA)is currently being actively developed as a protective system for mobile devices against ballistic threats such as kinetic energy penetrators and shaped-charge jets.Considering mobility,the aim is to design a protection system with a minimal amount of required mass.The efficiency of an ERA is sensitive to the impact position and the timing of the detonation.Therefore,different designs have to be tested for several impact scenarios to identify the best design.Since analytical models are not predicting the behavior of the ERA accurately enough and experiments,as well as numerical simulations,are too time-consuming,a data-driven model to estimate the displacements and deformation of plates of an ERA system is proposed here.The ground truth for the artificial neural network(ANN)is numerical simulation results that are validated with experiments.The ANN approximates the plate positions for different materials,plate sizes,and detonation point positions with sufficient accuracy in real-time.In a future investigation,the results from the model can be used to estimate the interaction of the ERA with a given threat.Then,a measure for the effectiveness of an ERA can be calculated.Finally,an optimal ERA can be designed and analyzed for any possible impact scenario in negligible time. 展开更多
关键词 artificial neural network Explosive reactive armor Finite element simulation Particle simulation Flash X-ray
下载PDF
人工智能肺结节辅助诊断系统预测亚实性肺结节恶性概率 被引量:39
20
作者 陈疆红 钟朝辉 +3 位作者 江桂莲 杨正汉 王振常 王大为 《中国医学影像技术》 CSCD 北大核心 2020年第4期535-539,共5页
目的评价人工智能(AI)肺结节辅助诊断系统预测肺亚实性结节(SN)恶性概率的效能。方法将86例接受手术治疗SN患者分为3组:组1为浸润前病变,组2为微浸润腺癌,组3为浸润性腺癌。将术前胸部CT数据导入AI肺结节识别软件,记录其自动测量的SN的C... 目的评价人工智能(AI)肺结节辅助诊断系统预测肺亚实性结节(SN)恶性概率的效能。方法将86例接受手术治疗SN患者分为3组:组1为浸润前病变,组2为微浸润腺癌,组3为浸润性腺癌。将术前胸部CT数据导入AI肺结节识别软件,记录其自动测量的SN的CT值、体积及恶性概率预测值。比较3组SN在CT平扫、增强动脉期及延迟期中的CT值、体积及恶性概率预测值,并对各组进行平扫与增强后配对样本检验。分析根据各期CT对各组SN恶性概率预测值与CT值及体积的相关性。结果共纳入88个SN,组1、组2和组3分别含27、28及33个SN。AI系统检测SN的敏感度为100%(88/88)。AI系统检测根据CT平扫、增强后动脉期、延迟期对组1 SN的恶性概率预测值分别为[85.18(56.64,92.08)]%、[67.15(58.99,90.30)]%和[89.82(56.64,92.23)]%,组2分别为[93.10(85.72,95.75)]%、[89.61(74.44,95.35)]%和[92.21(86.74,95.59)]%,组3分别为[97.05(92.81,98.74)]%、[96.89(90.40,98.60)]%和[96.49(89.89,98.69)]%。3期CT扫描对3组SN恶性概率预测值差异均有统计学意义(P均<0.01),且3组SN间CT值、体积差异均有统计学意义(P均<0.01)。各组平扫与增强CT恶性概率预测值比较无统计学差异(P均>0.05),各期CT对SN的恶性概率预测值与其CT值及体积均呈正相关(P均<0.01)。结论基于深度学习的AI肺结节辅助诊断系统可协助判定肺腺癌SN侵袭程度;平扫CT数据可用于辅助预测SN恶性概率,而增强CT对判断SN性质无明显帮助。 展开更多
关键词 肺肿瘤 诊断 人工智能 体层摄影术 X线计算机
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部