Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and h...Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.展开更多
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p...Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future 展开更多
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat...The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.60975072,60604009)the Aeronautical Science Foundation of China(Grant No.2008ZC01006)+2 种基金Beijing NOVA Program Foundation(Grant No.2007A017)the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-A18)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)
文摘Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.
基金supported by the Capital’s Funds for Health Improvement and Research,No.2022-2-2072(to YG).
文摘Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future
文摘The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.