To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was...To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.展开更多
Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where info...Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.展开更多
Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a mac...Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.展开更多
This paper proposes a Delivery Service Management(DSM)system for Small and Medium Enterprises(SMEs)that own a delivery fleet of pickup trucks to manage Business-to-Business(B2B)delivery services.The proposed DSM syste...This paper proposes a Delivery Service Management(DSM)system for Small and Medium Enterprises(SMEs)that own a delivery fleet of pickup trucks to manage Business-to-Business(B2B)delivery services.The proposed DSM system integrates four systems:Delivery Location Positioning(DLP),Delivery Route Planning(DRP),Arrival Time Prediction(ATP),and Communication and Data Sharing(CDS)systems.These systems are used to pinpoint the delivery locations of customers,plan the delivery route of each truck,predict arrival time(with an interval)at each delivery location,and communicate and share information among stakeholders,respectively.The DSM system deploys Google applications,a GPS tracking system,Google Map APIs,ATP algorithms(embedded in Excel Macros),Line,and Telegram as supporting tools.To improve the accuracy of the ATP system,three tech-niques are applied considering driver behaviors.The proposed DSM system has been implemented in a Thai SME.From the process perspective,the DSM system is a systematic procedure for end-to-end delivery services.It allows the interactions between planner-driver decisions and supporting tools.The supporting tools are simple,can be easily used with little training,and require low capital expenditure.The statistical analysis shows that the ATP algorithm with the three techniques provides high accuracy.Thus,the proposed DSM system is beneficial for practitioners to manage delivery services,especially for SMEs in emerging countries.展开更多
With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,prov...With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,providing passengers with a better riding experience.Giving precise bus arrival times is a critical link in achieving urban intelligent transportation.As a result,a mixed model-based bus arrival time prediction model(RHMX)was suggested in this work,which could dynamically forecast bus arrival time based on the input data.First,two sub-models were created:bus station stopping time prediction and interstation running time prediction.The former predicted the stopping time of a running bus at each downstream station in an iterative manner,while the latter projected its running time on each downstream road segment(stations as the break points).Using the two models,a group of time series data on interstation running time and bus station stopping time may be predicted.Following that,the time series data from the two sub-models was fused using long short-term memory(LSTM)to generate an approximate bus arrival time.Finally,using Kalman filtering,the LSTM prediction results were dynamically updated in order to eliminate the influence of aberrant data on the anticipated value and obtain a more precise bus arrival time.The experimental findings showed that the suggested model's accuracy and stability were both improved by 35%and 17%,respectively,over AutoNavi and Baidu.展开更多
基金Project(2011AA010101) supported by the National High Technology Research and Development Program of China
文摘To improve the accuracy of real-time public transport information release system, a collaborative prediction model was proposed based on cyber-physical systems architecture. In the model, the total bus travel time was divided into three parts: running time, dwell time and intersection delay time, and the data were divided into three categories of historical data, static data and real-time data. The bus arrival time was obtained by fusion computing the real-time data in perception layer together with historical data and static data in collaborative layer. The validity of the collaborative model was verified by the data of a typical urban bus line in Shanghai, and 1538 sets of data were collected and analyzed from three different perspectives. By comparing the experimental results with the actual results, it is shown that the experimental results are with higher prediction accuracy, and the collaborative prediction model adopted is able to meet the demand for bus arrival prediction.
文摘Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.
基金Sponsored by the Transportation Science and Technology Planning Project of Henan Province,China(Grant No.2019G-2-2).
文摘Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.
文摘This paper proposes a Delivery Service Management(DSM)system for Small and Medium Enterprises(SMEs)that own a delivery fleet of pickup trucks to manage Business-to-Business(B2B)delivery services.The proposed DSM system integrates four systems:Delivery Location Positioning(DLP),Delivery Route Planning(DRP),Arrival Time Prediction(ATP),and Communication and Data Sharing(CDS)systems.These systems are used to pinpoint the delivery locations of customers,plan the delivery route of each truck,predict arrival time(with an interval)at each delivery location,and communicate and share information among stakeholders,respectively.The DSM system deploys Google applications,a GPS tracking system,Google Map APIs,ATP algorithms(embedded in Excel Macros),Line,and Telegram as supporting tools.To improve the accuracy of the ATP system,three tech-niques are applied considering driver behaviors.The proposed DSM system has been implemented in a Thai SME.From the process perspective,the DSM system is a systematic procedure for end-to-end delivery services.It allows the interactions between planner-driver decisions and supporting tools.The supporting tools are simple,can be easily used with little training,and require low capital expenditure.The statistical analysis shows that the ATP algorithm with the three techniques provides high accuracy.Thus,the proposed DSM system is beneficial for practitioners to manage delivery services,especially for SMEs in emerging countries.
基金Guilin Scientific Research and Technology Development Plan(2020010304).
文摘With the widespread use of information technologies such as IoT and big data in the transportation business,traditional passenger transportation has begun to transition and upgrade into intelligent transportation,providing passengers with a better riding experience.Giving precise bus arrival times is a critical link in achieving urban intelligent transportation.As a result,a mixed model-based bus arrival time prediction model(RHMX)was suggested in this work,which could dynamically forecast bus arrival time based on the input data.First,two sub-models were created:bus station stopping time prediction and interstation running time prediction.The former predicted the stopping time of a running bus at each downstream station in an iterative manner,while the latter projected its running time on each downstream road segment(stations as the break points).Using the two models,a group of time series data on interstation running time and bus station stopping time may be predicted.Following that,the time series data from the two sub-models was fused using long short-term memory(LSTM)to generate an approximate bus arrival time.Finally,using Kalman filtering,the LSTM prediction results were dynamically updated in order to eliminate the influence of aberrant data on the anticipated value and obtain a more precise bus arrival time.The experimental findings showed that the suggested model's accuracy and stability were both improved by 35%and 17%,respectively,over AutoNavi and Baidu.