期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
融合随机反向学习的黏菌与算术混合优化算法 被引量:33
1
作者 贾鹤鸣 刘宇翔 +2 位作者 刘庆鑫 王爽 郑荣 《计算机科学与探索》 CSCD 北大核心 2022年第5期1182-1192,共11页
黏菌优化算法(SMA)和算术优化算法(AOA)是最近提出的新型元启发式优化算法。SMA算法具有较强的全局探索能力,但迭代后期振荡作用较弱,易陷入局部最优,且收缩机制不强,导致收敛速度慢。AOA算法利用乘除算子进行位置更新,随机性强,具有较... 黏菌优化算法(SMA)和算术优化算法(AOA)是最近提出的新型元启发式优化算法。SMA算法具有较强的全局探索能力,但迭代后期振荡作用较弱,易陷入局部最优,且收缩机制不强,导致收敛速度慢。AOA算法利用乘除算子进行位置更新,随机性强,具有较好的避免早熟收敛能力。针对上述问题,将两种算法结合并利用随机反向学习策略提高收敛速度,提出一种性能优越且高效的融合随机反向学习策略的黏菌与算术混合优化算法(HSMAAOA)。改进算法保留了SMA全局探索部分位置更新公式,局部开发阶段将乘除算子替换SMA收缩机制,提高算法随机性与跳出局部极值的能力。此外,通过随机反向学习策略增强改进算法种群多样性,提高收敛速度。实验结果表明,HSMAAOA算法具有良好的鲁棒性以及寻优精度,且明显提升了收敛速度。最后,通过焊接梁设计问题与压力容器设计问题,验证了HSMAAOA在工程问题上的适用性与有效性。 展开更多
关键词 黏菌优化算法(SMA) 算术优化算法(aoa) 混合优化 随机反向学习
下载PDF
基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测 被引量:27
2
作者 杨海柱 田馥铭 +1 位作者 张鹏 石剑 《电力系统保护与控制》 EI CSCD 北大核心 2022年第13期126-133,共8页
针对电力负荷预测精度不高、效率低的问题,采用算术优化算法(AOA)和最小二乘支持向量机(LSSVM)的模型对经过互补集合经验模态分解(CEEMD)和模糊熵(FE)综合处理后的子序列进行预测,构建了CEEMD-FE-AOA-LSSVM预测模型。首先,利用FE算法对... 针对电力负荷预测精度不高、效率低的问题,采用算术优化算法(AOA)和最小二乘支持向量机(LSSVM)的模型对经过互补集合经验模态分解(CEEMD)和模糊熵(FE)综合处理后的子序列进行预测,构建了CEEMD-FE-AOA-LSSVM预测模型。首先,利用FE算法对经过CEEMD处理后的各子序列进行熵值重组,该过程提高了模型的抗干扰能力和运算效率。然后,用AOA-LSSVM模型对处理后的子序列进行预测,并将预测叠加输出。最后,通过误差函数对模型进行横向对比和纵向对比,利用两种对比结果来检验其性能。通过实验可知,与CEEMD-LSSVM、AOA-LSSVM、CEEMD-AOA-LSSVM等其他模型相比,CEEMD-FE-AOA-LSSVM组合模型能够兼顾到预测精度与预测效率两方面,做到了综合性能的提升。同时也验证了经过CEEMD或AOA处理的模型能够有效地提升预测精度。 展开更多
关键词 算术优化算法 最小二乘支持向量机 组合模型 短期负荷预测
下载PDF
基于改进BPNN的5G通信网络流量预测
3
作者 李兵 《通信电源技术》 2024年第1期203-205,共3页
为提高5G网络流量预测结果的准确性,提出一种基于改进反向传播神经网络(Back Propagation Neural Network,BPNN)的5G通信网络流量预测方法,采用阿基米德优化算法(Arithmetic Optimization Algorithm,AOA)优化BPNN的权系数和阈值,建立基... 为提高5G网络流量预测结果的准确性,提出一种基于改进反向传播神经网络(Back Propagation Neural Network,BPNN)的5G通信网络流量预测方法,采用阿基米德优化算法(Arithmetic Optimization Algorithm,AOA)优化BPNN的权系数和阈值,建立基于AOA-BPNN的5G通信网络流量预测模型。采用某5G基站的网络通信流量监测数据进行仿真分析,并与其他方法的预测效果进行对比,结果表明,AOA-BPNN模型预测结果的平均相对误差和均方根误差分别为4.25%和0.522 GB,预测精度高于其他方法,验证了所提方法的实用性和优越性。 展开更多
关键词 5G通信 网络流量预测 反向传播神经网络(BPNN) 阿基米德优化算法(aoa)
下载PDF
AOA-CEEMDAN和融合特征在齿轮箱故障诊断中的应用
4
作者 马卫东 刘子全 +1 位作者 姚楠 朱雪琼 《机电工程》 CAS 北大核心 2024年第5期817-826,共10页
自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDA... 自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDAN方法的关键参数进行自适应选取,并采用优化后的CEEMDAN方法对齿轮箱振动信号进行了分解,生成若干个本征模态函数(IMF);随后,利用相关系数准则选择了前4阶IMF分量作为故障敏感分量;接着,利用由注意熵和散度熵组成的融合特征提取方法挖掘了故障敏感分量的故障特征,得到了故障敏感特征样本;最后,将表征齿轮箱故障特性的故障特征输入至RF多故障分类器中,建立了故障分类模型,完成了齿轮箱的故障识别;利用QPZZ-Ⅱ型齿轮箱数据集进行了实验,并将其结果与采用其他方法所得结果进行了对比。研究结果表明:相较于原始CEEMDAN,优化后的CEEMDAN能够更加准确地分解非线性齿轮箱振动信号,故障识别准确率提高了4%;相较于单一的故障特征,融合特征能够更加准确地表征齿轮箱的故障状态,故障识别准确率分别提高了3.2%和8%。基于AOA-CEEMDAN和融合特征提取以及RF分类器的故障诊断方法为齿轮箱的故障特征提取和故障诊断提供一种可行的思路和方案。 展开更多
关键词 齿轮箱 本征模态函数 算术优化算法 自适应噪声完备集成经验模态分解 随机森林
下载PDF
一种基于算术运算和透镜成像学习策略的改进灰狼优化算法
5
作者 王恒 杨婷 郭俊亮 《软件工程》 2024年第4期22-26,共5页
针对基本灰狼优化算法收敛速度慢,易陷入局部搜索的情况,提出一种基于算术运算和透镜成像学习策略的改进灰狼优化算法。该算法在基本灰狼优化算法的基础上,引入算术优化算法的乘除算子,利用带透镜成像的反向学习策略增强最优个体的多样... 针对基本灰狼优化算法收敛速度慢,易陷入局部搜索的情况,提出一种基于算术运算和透镜成像学习策略的改进灰狼优化算法。该算法在基本灰狼优化算法的基础上,引入算术优化算法的乘除算子,利用带透镜成像的反向学习策略增强最优个体的多样性,增强算法的全局探索能力,提高收敛速度。对比实验结果表明,改进的灰狼优化算法具有收敛速度快、易跳出局部寻优状态,在30个基准测试函数的求解中获得了28个测试函数的最优均值,并且求解质量及普适性均优于最新的几种对比算法。 展开更多
关键词 灰狼优化算法 算术优化算法 透镜成像的反向学习策略
下载PDF
基于CMIE与参数优化KELM的旋转机械故障诊断策略
6
作者 连璞 吴磊 伍永豪 《机电工程》 北大核心 2024年第1期62-71,共10页
针对多尺度排列熵忽略信号幅值信息以及粗粒化处理存在不足,造成旋转机械故障识别准确率不稳定和不可靠等缺陷,提出了一种基于复合多尺度增长熵(CMIE)和算术优化算法(AOA)优化核极限学习机(KELM)的旋转机械故障诊断策略(方法)。首先,引... 针对多尺度排列熵忽略信号幅值信息以及粗粒化处理存在不足,造成旋转机械故障识别准确率不稳定和不可靠等缺陷,提出了一种基于复合多尺度增长熵(CMIE)和算术优化算法(AOA)优化核极限学习机(KELM)的旋转机械故障诊断策略(方法)。首先,引入增长熵代替排列熵,进行了故障特征提取,同时采用复合粗粒化处理进行了信号的多尺度分析,提出了复合多尺度增长熵指标,将其用于提取旋转机械振动信号的非线性故障特征;随后,利用AOA对KELM的核心参数进行了自适应优化,建立了网络结构最优的分类模型;最后,将故障特征输入至AOA-KELM分类器,进行了训练和测试,根据分类器的输出标签完成了样本的故障识别任务;利用旋转机械故障数据集对所提策略的性能进行了实验和分析。研究结果表明:CMIE方法可以有效地识别旋转机械的故障类型和故障程度,两种数据集的识别精度均达到了99.2%,在特征提取效率和识别精度方面均优于比较方法;AOA-KELM模型的识别准确率和识别效率优于遗传算法优化核极限学习机、粒子群算法优化极限学习机、网格算法优化核极限学习机和灰狼算法优化核极限学习机。 展开更多
关键词 复合多尺度增长熵 算术优化算法 核极限学习机 滚动轴承 齿轮箱 复合粗粒化处理 信号多尺度分析
下载PDF
采用协同搜索策略的算术优化算法
7
作者 付小朋 王勇 冯爱武 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2416-2423,共8页
针对标准算术优化算法(AOA)存在的不足,提出一种新的采用协同搜索策略的算术优化算法(CSSAOA).首先,采用乘法搜索与除法搜索协同并行搜索的策略来增强算法的全局探索能力;其次,采用减法搜索与加法搜索协同进行的策略来增强算法的局部搜... 针对标准算术优化算法(AOA)存在的不足,提出一种新的采用协同搜索策略的算术优化算法(CSSAOA).首先,采用乘法搜索与除法搜索协同并行搜索的策略来增强算法的全局探索能力;其次,采用减法搜索与加法搜索协同进行的策略来增强算法的局部搜索能力;再次,改进数学优化加速函数(MOA),使算法在搜索前期侧重进行全局探索,在搜索后期侧重开展局部开发,加快了算法的全局收敛速度;最后,采用外抛交叉变异策略对当前最优个体实施多样性变异,确保在算法搜索前期不至于吸引过多个体过早聚集到群体当前最优个体的周围,增强了算法搜索跳出局部最优的能力.通过8个基准测试函数和2个典型的工程应用以及CEC2019函数实例测试,实验结果表明了CSSAOA具有更快的全局收敛速度和更高的优化精度,在实际工程优化应用中效率更高. 展开更多
关键词 算术优化算法(aoa) 协同搜索 数学优化加速函数 外抛交叉变异
下载PDF
融合哈密顿图的麻雀与算术混合优化算法
8
作者 田露 刘升 《计算机科学与探索》 CSCD 北大核心 2023年第7期1586-1598,共13页
针对麻雀搜索算法(SSA)迭代后期种群多样性减少、易陷入局部最优等问题,提出一种基于哈密顿图的麻雀算术混合优化算法(HSSAAOAH)。首先,在SSA发现者-跟随者模型和侦察机制的基础上,引入算术优化算法(AOA)的乘除算子。利用乘除算子的高... 针对麻雀搜索算法(SSA)迭代后期种群多样性减少、易陷入局部最优等问题,提出一种基于哈密顿图的麻雀算术混合优化算法(HSSAAOAH)。首先,在SSA发现者-跟随者模型和侦察机制的基础上,引入算术优化算法(AOA)的乘除算子。利用乘除算子的高分布性,提高算法在迭代后期解的多样性;其次,将种群中所有个体转化成一个无向加权图,在每一轮迭代后,使用改良圈算法计算个体构成的哈密顿环长度,根据相邻两代长度的比值衡量种群收敛趋势;然后,对于没能有效收敛的子代,随机生成一定数量的个体并使用贪婪策略进行选择,替代表现较差的个体,提高解的质量,增强跳出局部极值的能力;最后,将HSSAAOAH与不同优化算法在基准函数和两个工程设计问题上进行仿真实验,结果表明HSSAAOAH算法收敛速度更快,寻优精度更高,具有良好的鲁棒性和寻优性能。 展开更多
关键词 麻雀搜索算法(SSA) 算术优化算法(aoa) 哈密顿图 改良圈算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部