Areal interpolation is the process of transferring data from source zones to target zones. While method development remains a top research priority in areal interpo-lation,the accuracy assessment aspect also begs for ...Areal interpolation is the process of transferring data from source zones to target zones. While method development remains a top research priority in areal interpo-lation,the accuracy assessment aspect also begs for attention. This paper reports an empirical experience on probing an areal interpolation method to highlight the power and potential pitfalls in accuracy assessment. A kriging-based interpolation algorithm is evaluated by several approaches. It is found that accuracy assessment is a powerful tool to understand an interpolation method,e.g. the utility of ancillary data and semi-variogram modeling in kriging in our case study. However,different assessment methods and spatial units on which assessment is conducted can lead to rather different results. The typical practice to assess accuracy at the source zone level may overestimate interpolation accuracy. Assessment at the target zone level is suggested as a supplement.展开更多
Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably chal...Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study,we proposed a novel method to produce high-quality,high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging(ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation(PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multisatellite Measurement(IMERG) product with observations from 1065 meteorological stations in the warm season(May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG.According to a cross-validation with gauged observations, the correlation coefficient(CC),probability of detection(POD) and critical success index(CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error(RMSE), mean error(ME) and false alarm ratio(FAR)decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.展开更多
Using constructal entransy dissipation rate minimization method based on discrete variable cross-section conducting path,constructal optimizations of elemental area with variable cross-section conducting path are perf...Using constructal entransy dissipation rate minimization method based on discrete variable cross-section conducting path,constructal optimizations of elemental area with variable cross-section conducting path are performed,and the results are compared with the optimization results of elemental area with the constant cross-section conducting path.The comparison shows that the minimum mean temperature difference based on elemental area with variable cross-section conducting path increases and approaches a constant as the assembly's order increases,but the minimum mean temperature difference based on elemental area with constant cross-section conducting path decreases and approaches a constant as the assembly's order increases.The difference between them is caused by the different dimensionless mean temperature difference of the first order assembly.A universal constructal optimization method by self similar organization to improve heat transfer ability and its corresponding rule are proposed.With the constructal optimization method by self similar organization based on entransy dissipation rate minimization objective,the mean temperature difference approaches a constant as the assembly's order increases.展开更多
文摘Areal interpolation is the process of transferring data from source zones to target zones. While method development remains a top research priority in areal interpo-lation,the accuracy assessment aspect also begs for attention. This paper reports an empirical experience on probing an areal interpolation method to highlight the power and potential pitfalls in accuracy assessment. A kriging-based interpolation algorithm is evaluated by several approaches. It is found that accuracy assessment is a powerful tool to understand an interpolation method,e.g. the utility of ancillary data and semi-variogram modeling in kriging in our case study. However,different assessment methods and spatial units on which assessment is conducted can lead to rather different results. The typical practice to assess accuracy at the source zone level may overestimate interpolation accuracy. Assessment at the target zone level is suggested as a supplement.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01A137)the National Natural Science Foundation of China(41901363,42071075)+2 种基金Tianshan Youth Project of Xinjiang Uigur Autonomous Region Outstanding young talents(2019Q039)National Key R&D Program of China(2019YFC1510503)the Basic Research Operating Expenses of the Central Level Non-profit Research Institutes(IDM2020006)。
文摘Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study,we proposed a novel method to produce high-quality,high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging(ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation(PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multisatellite Measurement(IMERG) product with observations from 1065 meteorological stations in the warm season(May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG.According to a cross-validation with gauged observations, the correlation coefficient(CC),probability of detection(POD) and critical success index(CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error(RMSE), mean error(ME) and false alarm ratio(FAR)decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.
基金supported by Program for New Century Excellent Talents in Universities of China and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)
文摘Using constructal entransy dissipation rate minimization method based on discrete variable cross-section conducting path,constructal optimizations of elemental area with variable cross-section conducting path are performed,and the results are compared with the optimization results of elemental area with the constant cross-section conducting path.The comparison shows that the minimum mean temperature difference based on elemental area with variable cross-section conducting path increases and approaches a constant as the assembly's order increases,but the minimum mean temperature difference based on elemental area with constant cross-section conducting path decreases and approaches a constant as the assembly's order increases.The difference between them is caused by the different dimensionless mean temperature difference of the first order assembly.A universal constructal optimization method by self similar organization to improve heat transfer ability and its corresponding rule are proposed.With the constructal optimization method by self similar organization based on entransy dissipation rate minimization objective,the mean temperature difference approaches a constant as the assembly's order increases.