Scenario prediction was introduced to better understand urban dynamics and to support urban planning. Taking the Dongguan central urban area of the Pearl River Delta, China as an example, three urban development scena...Scenario prediction was introduced to better understand urban dynamics and to support urban planning. Taking the Dongguan central urban area of the Pearl River Delta, China as an example, three urban development scenarios, historical trend (HT) scenario, forest protection (FP) scenario, and growth restriction (GR) scenario, were designed and transplanted into the SLEUTH model through the parameter self-modification method. The quantitative analysis results showed that the urban area would expand continuously from 2003 to 2030 under the HT scenario. More land resources would be saved under the GR scenario than FP scenario. Furthermore, the urban growth under the HT and FP scenarios would come to a steady state by 2020, while this deadline of the GR scenario would be postponed to 2025. The spatial pattern analysis using five spatial metrics, class area, number of patches, largest patch index, edge density, and contagion index, showed that under all the scenarios, the urban patches would become bigger and the form would become more compact, and the urban form under the GR scenario would be the smallest and most heterogeneous. These demonstrated that the GR scenario was more effective in meeting the goal of land protection and sustainable development for the study area.展开更多
Changes in land use associated with the suppression of native vegetation can greatly alter the landscape configuration, affecting biodiversity and environmental services availability. This study analyzes how changes i...Changes in land use associated with the suppression of native vegetation can greatly alter the landscape configuration, affecting biodiversity and environmental services availability. This study analyzes how changes in land use affect landscape patterns of vegetation remnant over a 10 year period. We quantified spatial landscape patterns throughout a hydrographic basin for the years 2002, 2008, 2010 and 2012, using nine landscape metrics. An indicator of integrity was used to details the transformation processes occurring in the basin that could be used to monitor the impact of landscape changes and its spatial patterning. Results showed that over this decade, extension of farming activities reduced the cover of native vegetation by 4.4%, with grassy-woody savanna, wooded savanna and forested savanna impacted especially strongly. Suppression of vegetation across this period reduced the size of fragments and their connectivity. The landscape fragmentation indicator indicated that the fragmentation pattern varied spatially, with the upland areas along river headwaters, being most fragmented. Areas of floodplains vegetation, belonged to the Pantanal Wetland, although in better integrity states, are the most threatened by current pressures of land use change. An intense recovery program for headwaters and aquifer recharge areas, as well as riparian forests, is recommended to avoid the future depletion of water production. Besides, we also recommend the maintenance and recovering of the connectivity of the current remaining patches of natural vegetation corridors and elaboration of specific laws that incoporate the consolidated scientific knowladge about wetland ecosystem functioning, like the Pantanal.展开更多
基金Support by the National Natural Science Foundation of China (No. 40671127)the National High Technology Research and Development Program of China (No. 2006AA120102)+1 种基金the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2008BAK49B04)the National Next Generation Internet Program of China (No. CNGI-09- 01-07)
文摘Scenario prediction was introduced to better understand urban dynamics and to support urban planning. Taking the Dongguan central urban area of the Pearl River Delta, China as an example, three urban development scenarios, historical trend (HT) scenario, forest protection (FP) scenario, and growth restriction (GR) scenario, were designed and transplanted into the SLEUTH model through the parameter self-modification method. The quantitative analysis results showed that the urban area would expand continuously from 2003 to 2030 under the HT scenario. More land resources would be saved under the GR scenario than FP scenario. Furthermore, the urban growth under the HT and FP scenarios would come to a steady state by 2020, while this deadline of the GR scenario would be postponed to 2025. The spatial pattern analysis using five spatial metrics, class area, number of patches, largest patch index, edge density, and contagion index, showed that under all the scenarios, the urban patches would become bigger and the form would become more compact, and the urban form under the GR scenario would be the smallest and most heterogeneous. These demonstrated that the GR scenario was more effective in meeting the goal of land protection and sustainable development for the study area.
文摘Changes in land use associated with the suppression of native vegetation can greatly alter the landscape configuration, affecting biodiversity and environmental services availability. This study analyzes how changes in land use affect landscape patterns of vegetation remnant over a 10 year period. We quantified spatial landscape patterns throughout a hydrographic basin for the years 2002, 2008, 2010 and 2012, using nine landscape metrics. An indicator of integrity was used to details the transformation processes occurring in the basin that could be used to monitor the impact of landscape changes and its spatial patterning. Results showed that over this decade, extension of farming activities reduced the cover of native vegetation by 4.4%, with grassy-woody savanna, wooded savanna and forested savanna impacted especially strongly. Suppression of vegetation across this period reduced the size of fragments and their connectivity. The landscape fragmentation indicator indicated that the fragmentation pattern varied spatially, with the upland areas along river headwaters, being most fragmented. Areas of floodplains vegetation, belonged to the Pantanal Wetland, although in better integrity states, are the most threatened by current pressures of land use change. An intense recovery program for headwaters and aquifer recharge areas, as well as riparian forests, is recommended to avoid the future depletion of water production. Besides, we also recommend the maintenance and recovering of the connectivity of the current remaining patches of natural vegetation corridors and elaboration of specific laws that incoporate the consolidated scientific knowladge about wetland ecosystem functioning, like the Pantanal.