The objective of this work is to determine changes of surface properties of a bentonite after acid activation, using hydrochloric acid solutions (HCl) at room temperature. XRD, FX, FTIR, MEB, and BET analyses of the s...The objective of this work is to determine changes of surface properties of a bentonite after acid activation, using hydrochloric acid solutions (HCl) at room temperature. XRD, FX, FTIR, MEB, and BET analyses of the samples have been carried out to examine the structure of bentonite before and after acid activation. It is found that the raw bentonite is composed of dioctahedral montmorillonite with predominant quantity and certain amounts of quartz, albite and illite, etc. It has an cation exchange capacity (CEC) of 74.32 meq/g which allows it to be characterized as typical sodium bentonite. The changes, at low acid concentrations, are the result from from cation exchange (exchangeable cations with H+ ions). Differences of surface area at high acid concentrations (0.25 - 0.4 M) were caused by structural changes and partial decomposition of the samples. Data of surface area measurements have showed that with increase of concentration of hydrochloric acid, the surface area increased. The maximum value (837.11 m2/g) was reached by the sample activated with 0.4 M HCl. By against, activation with higher concentration (0.6 M) caused a decrease in the surface area.展开更多
Oil-palm shell wastes were successfully converted into useful activated carbons in a systematic and novel approach by optimizing the pyrolysis conditions and subsequent steam activation conditions to maximize the BET ...Oil-palm shell wastes were successfully converted into useful activated carbons in a systematic and novel approach by optimizing the pyrolysis conditions and subsequent steam activation conditions to maximize the BET surface area.The optimal activation conditions were a steam flow rate of 1.13 kg/h,hold time of 1.5 h and temperature of 950℃,yielding BET areas of 1432.94 and 1382.95 m^(2)/g for nitrogen-pyrolyzed and vacuumpyrolyzed chars,respectively.In steam-chemical activation,one-step activation of oil-palm shell in steam with potassium carbonate(K_(2)CO_(3)),sodium carbonate(Na_(2)CO_(3))or potassium chloride(KCl)was conducted,resulting in BET area output order of shell/K_(2)CO_(3)(710.56 m^(2)/g)>shell/KCl(498.55 m^(2)/g)>shell(366.7 m^(2)/g)>shell/Na_(2)CO_(3)(326.62 m^(2)/g).This study reported the first use of KCl and Na_(2)CO_(3)as chemical reagents in one-step steam-chemical activation of biomass.KCl-activated carbon exhibited retardation of tar formation property,resulting in better pore development than pure steam activated carbon.Phenol adsorption of activated carbon is not only a function of the BET surface area but also the type of pyrolysis used prior to physical activation.Activated carbon(BET area of 1192.29 m^(2)/g)pyrolyzed under vacuum could adsorb 87%more phenol than that pyrolyzed in nitrogen flow which had a higher BET area of 1432.94 m^(2)/g.Phenol adsorption capacities of activated carbons are:shell pyrolyzed under vacuum(275.5 mg/g)>shell pyrolyzed in N_(2)flow(147.1 mg/g)>shell/K_(2)CO_(3)(145.7 mg/g)>shell without pyrolysis(12.1 mg/g).These activated carbons would be highly suitable in industry processes to remove phenolic contaminants.展开更多
New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable...New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.展开更多
Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there...Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there is a lack of a universally applicable method to construct hierarchical porous biochar controllably.In this work,a multi-stage activation strategy combining the feature of different activation methods is proposed for this target.To confirm the porous characteristic in prepared samples,N2 adsorption-desorption and transmission electron microscope were used.As the optimal sample,BC-P3K4S had the highest specific surface area of 3583.3 m^(2) g^(−1).Evaluated as the electrode for a lithium-ion capacitor,BC-P3K4S displayed a capacity of 139.1 mAh g^(−1) at 0.1 A g^(−1).After coupling it with pre-lithiated hard carbon,the full device exhibited a high energy density of 129.3 W h kg^(−1) at 153 W kg^(−1).The work outlined herein offers some insights into the preparation of hierarchical porous biochar from complex biomass by multistep activation method.展开更多
To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extra...To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extract functional networks and then investigated their character-istics. Motor cortex networks were constructed with activation areas obtained with statistical analysis as vertexes and correlation coefficients of fMRI time series as linking strength. The equivalent non-motor cortex networks were constructed with certain distance rules. The graphic and dynamical measures of motor cor-tex networks and non-motor cortex networks were calculated, which shows the motor cortex networks are more compact, having higher sta-tistical independence and integration than the non-motor cortex networks. It indicates the motor cortex networks are more appropriate for information diffusion.展开更多
文摘The objective of this work is to determine changes of surface properties of a bentonite after acid activation, using hydrochloric acid solutions (HCl) at room temperature. XRD, FX, FTIR, MEB, and BET analyses of the samples have been carried out to examine the structure of bentonite before and after acid activation. It is found that the raw bentonite is composed of dioctahedral montmorillonite with predominant quantity and certain amounts of quartz, albite and illite, etc. It has an cation exchange capacity (CEC) of 74.32 meq/g which allows it to be characterized as typical sodium bentonite. The changes, at low acid concentrations, are the result from from cation exchange (exchangeable cations with H+ ions). Differences of surface area at high acid concentrations (0.25 - 0.4 M) were caused by structural changes and partial decomposition of the samples. Data of surface area measurements have showed that with increase of concentration of hydrochloric acid, the surface area increased. The maximum value (837.11 m2/g) was reached by the sample activated with 0.4 M HCl. By against, activation with higher concentration (0.6 M) caused a decrease in the surface area.
文摘Oil-palm shell wastes were successfully converted into useful activated carbons in a systematic and novel approach by optimizing the pyrolysis conditions and subsequent steam activation conditions to maximize the BET surface area.The optimal activation conditions were a steam flow rate of 1.13 kg/h,hold time of 1.5 h and temperature of 950℃,yielding BET areas of 1432.94 and 1382.95 m^(2)/g for nitrogen-pyrolyzed and vacuumpyrolyzed chars,respectively.In steam-chemical activation,one-step activation of oil-palm shell in steam with potassium carbonate(K_(2)CO_(3)),sodium carbonate(Na_(2)CO_(3))or potassium chloride(KCl)was conducted,resulting in BET area output order of shell/K_(2)CO_(3)(710.56 m^(2)/g)>shell/KCl(498.55 m^(2)/g)>shell(366.7 m^(2)/g)>shell/Na_(2)CO_(3)(326.62 m^(2)/g).This study reported the first use of KCl and Na_(2)CO_(3)as chemical reagents in one-step steam-chemical activation of biomass.KCl-activated carbon exhibited retardation of tar formation property,resulting in better pore development than pure steam activated carbon.Phenol adsorption of activated carbon is not only a function of the BET surface area but also the type of pyrolysis used prior to physical activation.Activated carbon(BET area of 1192.29 m^(2)/g)pyrolyzed under vacuum could adsorb 87%more phenol than that pyrolyzed in nitrogen flow which had a higher BET area of 1432.94 m^(2)/g.Phenol adsorption capacities of activated carbons are:shell pyrolyzed under vacuum(275.5 mg/g)>shell pyrolyzed in N_(2)flow(147.1 mg/g)>shell/K_(2)CO_(3)(145.7 mg/g)>shell without pyrolysis(12.1 mg/g).These activated carbons would be highly suitable in industry processes to remove phenolic contaminants.
基金Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
文摘New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.
基金National Natural Science Foundation of China(51976234)Forestry technology projects of Zhejiang Province(2023SY04)+1 种基金Foundation of Jiangsu Key Lab of Biomass Energy and Material(JSBEM-S-202101)National Nonprofit Institute Research Grant of Chinese Academy of Forestry(CAFYBB2020ZF001).
文摘Biochar with a highly accessible specific surface area can display a higher performance when it is used as the cathode of lithium-ion capacitors.Facing the complex composition and diversity of biomass precursors,there is a lack of a universally applicable method to construct hierarchical porous biochar controllably.In this work,a multi-stage activation strategy combining the feature of different activation methods is proposed for this target.To confirm the porous characteristic in prepared samples,N2 adsorption-desorption and transmission electron microscope were used.As the optimal sample,BC-P3K4S had the highest specific surface area of 3583.3 m^(2) g^(−1).Evaluated as the electrode for a lithium-ion capacitor,BC-P3K4S displayed a capacity of 139.1 mAh g^(−1) at 0.1 A g^(−1).After coupling it with pre-lithiated hard carbon,the full device exhibited a high energy density of 129.3 W h kg^(−1) at 153 W kg^(−1).The work outlined herein offers some insights into the preparation of hierarchical porous biochar from complex biomass by multistep activation method.
文摘To understand the connectivity of cerebral cor-tex, especially the spatial and temporal pattern of movement, functional magnetic resonance imaging (fMRI) during subjects performing finger key presses was used to extract functional networks and then investigated their character-istics. Motor cortex networks were constructed with activation areas obtained with statistical analysis as vertexes and correlation coefficients of fMRI time series as linking strength. The equivalent non-motor cortex networks were constructed with certain distance rules. The graphic and dynamical measures of motor cor-tex networks and non-motor cortex networks were calculated, which shows the motor cortex networks are more compact, having higher sta-tistical independence and integration than the non-motor cortex networks. It indicates the motor cortex networks are more appropriate for information diffusion.