After current zero,which is the moment when the vacuum circuit breaker interrupts a vacuum arc,sheath development is the first process in the dielectric recovery process.An axial magnetic field(AMF) is widely used i...After current zero,which is the moment when the vacuum circuit breaker interrupts a vacuum arc,sheath development is the first process in the dielectric recovery process.An axial magnetic field(AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted.Therefore,it is very important to study the influence of different AMF amplitudes on the sheath development.The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective.Thus,the particle in cell-Monte Carlo collisions(PIC-MCC) method was adopted to develop the sheath development model.We compared the simulation results with the experimental results and then validated the simulation.We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes.The results showed mat the larger the AMF amplitudes are,the faster the sheath develops and the lower the ion energy density is,meaning the breakdown is correspondingly more difficult.展开更多
A detailed understanding of anode heat transfer is important for the optimization of arc processing technology.In this paper,a two-temperature chemical non-equilibrium model considering the collisionless space charge ...A detailed understanding of anode heat transfer is important for the optimization of arc processing technology.In this paper,a two-temperature chemical non-equilibrium model considering the collisionless space charge sheath is developed to investigate the anode heat transfer of nitrogen free-burning arc.The temperature,total heat flux and different heat flux components are analyzed in detail under different arc currents and anode materials.It is found that the arc current can affect the parameter distributions of anode region by changing plasma characteristics in arc column.As the arc current increases from 100 A to 200 A,the total anode heat flux increases,however,the maximum electron condensation heat flux decreases due to the arc expansion.The anode materials have a significant effect on the temperature and heat flux distributions in the anode region.The total heat flux on thoriated tungsten anode is lower than that on copper anode,while the maximum temperature is higher.The power transferred to thoriated tungsten anode,ranked in descending order,is heat flux from heavy-species,electron condensation heat,heat flux from electrons and ion recombination heat.However,the electron condensation heat makes the largest contribution for power transferred to copper anode.展开更多
文摘为揭示真空电弧的微观动态形成机理及其影响因素,利用气体动力学模型研究真空断路器触头间的电弧形成过程。采用的数学模型包括电子和正负离子漂移扩散方程、微观粒子的碰撞方程及电场的泊松方程。建立触头间距为10 mm,触头间电压分别为工频交流12 k V和400 V的真空断路器简化模型,通过仿真得到工频真空电弧形成过程和鞘层形成过程的电子密度、平均电子能量及碰撞能量损失分布等各项微观参数的时变规律,并计算电子迁移率、金属蒸气压力和初始电子密度对真空电弧形成过程的影响。仿真结果表明:粒子运动速度差异形成的鞘层是电弧形成的基础;高电压、强电场作用促使电子能量产生轴向集中;电子迁移率及金属蒸气压力影响电弧形成过程;而初始电子密度对真空电弧弧前导电通道形成过程的影响可忽略。
基金supported by the National Key Basic Research Program of China(973 Program) 2015CB251002National Natural Science Foundation of China under Grant 51521065, 51577145,51377128,51323012,51607135+3 种基金Program of State Grid Electrical Power Research Institute GY71-14-004the Science and Technology Project Funds of the Grid State Corporation(Medium voltage DC distribution protection) (SGSNKYOOKJJS1501564)the Science and Technology Project Funds of Hubei Electric Power Company(SGRIZLKJ (2016)325)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE17305)
文摘After current zero,which is the moment when the vacuum circuit breaker interrupts a vacuum arc,sheath development is the first process in the dielectric recovery process.An axial magnetic field(AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted.Therefore,it is very important to study the influence of different AMF amplitudes on the sheath development.The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective.Thus,the particle in cell-Monte Carlo collisions(PIC-MCC) method was adopted to develop the sheath development model.We compared the simulation results with the experimental results and then validated the simulation.We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes.The results showed mat the larger the AMF amplitudes are,the faster the sheath develops and the lower the ion energy density is,meaning the breakdown is correspondingly more difficult.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11735004 and 12005010).
文摘A detailed understanding of anode heat transfer is important for the optimization of arc processing technology.In this paper,a two-temperature chemical non-equilibrium model considering the collisionless space charge sheath is developed to investigate the anode heat transfer of nitrogen free-burning arc.The temperature,total heat flux and different heat flux components are analyzed in detail under different arc currents and anode materials.It is found that the arc current can affect the parameter distributions of anode region by changing plasma characteristics in arc column.As the arc current increases from 100 A to 200 A,the total anode heat flux increases,however,the maximum electron condensation heat flux decreases due to the arc expansion.The anode materials have a significant effect on the temperature and heat flux distributions in the anode region.The total heat flux on thoriated tungsten anode is lower than that on copper anode,while the maximum temperature is higher.The power transferred to thoriated tungsten anode,ranked in descending order,is heat flux from heavy-species,electron condensation heat,heat flux from electrons and ion recombination heat.However,the electron condensation heat makes the largest contribution for power transferred to copper anode.