It is well known that if X is an arc or a circle, then there is no expansive homeomorphism on X. In this paper we prove that there is no expansive Z^d action on X, which answers the two questions raised by us before, ...It is well known that if X is an arc or a circle, then there is no expansive homeomorphism on X. In this paper we prove that there is no expansive Z^d action on X, which answers the two questions raised by us before, In 1979, Mané proved that there is no expansive homeomorphism on infinite dimensional spaces. Contrary to this result, we construct an expansive Z^2 action on an infinite dimensional space. We also construct an expansive Z^2 action on a zero dimensional space but no element in Z^2 is expansive.展开更多
This paper presents a result of approximation an arc circles by using a quartic Bezier curve. Based on the barycentric coordinates of two and three combination of control points, the interior control points are determ...This paper presents a result of approximation an arc circles by using a quartic Bezier curve. Based on the barycentric coordinates of two and three combination of control points, the interior control points are determined by forcing the curvature at median point as similar as the given curvature at end points. Hausdorff distance is used to investigate the order of accuracy compare to the actual arc circles through central angle of . We found that the optimal approximation order is eight which is somewhat similar to preceding methods in the literatures.展开更多
In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such t...In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such that w(z) =0 for arbitary z ∈γ/{0} are given. Secondly, that the limit set of w(z) is a circle or line as z → 0 is proved in this case. Finally, two numerical examples are given to illustrate our results.展开更多
文摘It is well known that if X is an arc or a circle, then there is no expansive homeomorphism on X. In this paper we prove that there is no expansive Z^d action on X, which answers the two questions raised by us before, In 1979, Mané proved that there is no expansive homeomorphism on infinite dimensional spaces. Contrary to this result, we construct an expansive Z^2 action on an infinite dimensional space. We also construct an expansive Z^2 action on a zero dimensional space but no element in Z^2 is expansive.
文摘This paper presents a result of approximation an arc circles by using a quartic Bezier curve. Based on the barycentric coordinates of two and three combination of control points, the interior control points are determined by forcing the curvature at median point as similar as the given curvature at end points. Hausdorff distance is used to investigate the order of accuracy compare to the actual arc circles through central angle of . We found that the optimal approximation order is eight which is somewhat similar to preceding methods in the literatures.
基金the National Natural Science Foundation of China(No.10601036)
文摘In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such that w(z) =0 for arbitary z ∈γ/{0} are given. Secondly, that the limit set of w(z) is a circle or line as z → 0 is proved in this case. Finally, two numerical examples are given to illustrate our results.