Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as...Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.展开更多
The purpose of this study is to determine the properties of the solvents responsible of the chromatographic phenomenon. A simple and homogeneous system of ascending chromatography on paper is described, allowing varyi...The purpose of this study is to determine the properties of the solvents responsible of the chromatographic phenomenon. A simple and homogeneous system of ascending chromatography on paper is described, allowing varying only one of the factors constituting it. This method made it possible to determine constants by means of a simple equation. The validity of the method is deduced from the good agreement between its mathematical expression and the experimental values obtained.展开更多
Earlier it was shown by different authors that there are cavities (vacancies, holes) in any liquid. The cavities should play a prominent role in dissolution processes. Nevertheless this fact was ignored in previous mo...Earlier it was shown by different authors that there are cavities (vacancies, holes) in any liquid. The cavities should play a prominent role in dissolution processes. Nevertheless this fact was ignored in previous model of dissolution. The sizes of the cavities in different solvents containing benzene molecules were determined using solvent induced spectral shift method. The measurements of S1←S0 benzene transition spectral shifts permit to conclude that 1) macroscopic excess volumes play an almost negligible role in processes of benzene dissolution in very different solvents and 2) the minimal size of the cavity in water able to accommodate benzene molecule coincides with the solute size. Generalization of this conclusion to other nonpolar aromatics leads to evaluation contraction of the solutes under aqueous solvent influence permits to predict the solubility values of other aromatics in water and to evaluate effect of enhancement hydrate cell around these molecules on solubility.展开更多
基金Supported by the National Natural Science Foundation of China(No.21276033)the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances(Nos.SKL-BASS1707,SKL-BASS1711)the Liaoning Provincial BaiQianWan Talents Program(No.2017-6)
文摘Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.
文摘The purpose of this study is to determine the properties of the solvents responsible of the chromatographic phenomenon. A simple and homogeneous system of ascending chromatography on paper is described, allowing varying only one of the factors constituting it. This method made it possible to determine constants by means of a simple equation. The validity of the method is deduced from the good agreement between its mathematical expression and the experimental values obtained.
文摘Earlier it was shown by different authors that there are cavities (vacancies, holes) in any liquid. The cavities should play a prominent role in dissolution processes. Nevertheless this fact was ignored in previous model of dissolution. The sizes of the cavities in different solvents containing benzene molecules were determined using solvent induced spectral shift method. The measurements of S1←S0 benzene transition spectral shifts permit to conclude that 1) macroscopic excess volumes play an almost negligible role in processes of benzene dissolution in very different solvents and 2) the minimal size of the cavity in water able to accommodate benzene molecule coincides with the solute size. Generalization of this conclusion to other nonpolar aromatics leads to evaluation contraction of the solutes under aqueous solvent influence permits to predict the solubility values of other aromatics in water and to evaluate effect of enhancement hydrate cell around these molecules on solubility.