Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w...Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.展开更多
S阴极因为容量大、成本低而得到广泛的研究,但是S阴极的导电性不好,是S阴极的一大缺点。使用水热法,利用葡萄糖溶液制备炭球前驱体,再将S、Se与C材料结合,改善S阴极导电性差的缺点。同时,合成的Se_(2)S_(5)@C材料中的Se也贡献了容量,使...S阴极因为容量大、成本低而得到广泛的研究,但是S阴极的导电性不好,是S阴极的一大缺点。使用水热法,利用葡萄糖溶液制备炭球前驱体,再将S、Se与C材料结合,改善S阴极导电性差的缺点。同时,合成的Se_(2)S_(5)@C材料中的Se也贡献了容量,使得铁基水系电池的容量得到升高,Se_(2)S_(5)@C正极与泡沫铁组成的全电池容量可达到201 mA h/g。展开更多
Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-met...Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.展开更多
由于缺乏先进的固体电解质界面相,水系锌电池的循环寿命受到锌金属负极副反应和枝晶等问题的严重制约.本文介绍了一种由两性分子(APMs)电解液添加剂构建而成的自组装电极-电解质界面相(AEEI).作为一个示范,这里选取聚乙烯吡咯烷酮(PVP)...由于缺乏先进的固体电解质界面相,水系锌电池的循环寿命受到锌金属负极副反应和枝晶等问题的严重制约.本文介绍了一种由两性分子(APMs)电解液添加剂构建而成的自组装电极-电解质界面相(AEEI).作为一个示范,这里选取聚乙烯吡咯烷酮(PVP)用做APMs,因为它的羰基氧原子与芳香性的吡咯环共轭,从而具有较强的电子给体性质.X射线光电子能谱和傅里叶变换红外光谱分析表明,AEEI的形成和稳定是由APMs的羰基氧原子同时与锌金属和锌离子相互作用推动的.所形成的AEEI主要由富含锌离子的APMs致密层状胶束构成.在电解质中保持APMs的含量在临界聚集浓度(~0.1%)以上,可以保证AEEI的固有稳定性,避免裂纹形成或脱落等问题.得益于其抑制水分解副反应和不利的二维锌扩散的能力,在AEEI的作用下实现了无枝晶的锌沉积.在1 M Zn(OTf)_(2)添加1%PVP的电解液中,形成的AEEI保证了锌对称电池具有超过2000小时的长循环寿命,Zn||Ti电池500个循环后库仑效率高于99.2%,以及V_(2)O_(5)||Zn全电池500个循环后容量的高保持率(达76%).展开更多
基金financially supported by National Natural Science Foundation of China(21601057)Hunan Provincial Natural Science Foundation of China(2018JJ3116)Excellent Youth Fund of Hunan Provincial Education Department(18B298)
文摘Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.
文摘S阴极因为容量大、成本低而得到广泛的研究,但是S阴极的导电性不好,是S阴极的一大缺点。使用水热法,利用葡萄糖溶液制备炭球前驱体,再将S、Se与C材料结合,改善S阴极导电性差的缺点。同时,合成的Se_(2)S_(5)@C材料中的Se也贡献了容量,使得铁基水系电池的容量得到升高,Se_(2)S_(5)@C正极与泡沫铁组成的全电池容量可达到201 mA h/g。
基金supported by the Ministry of Education, Singapore, Tier 2 (MOE2015-T2-1-148) and Tier 1 (Grant No. M4011424.110)National Natural Science Foundation of China (No. 21503025)+2 种基金Fundamental Research Funds for Central Universities (No. 106112016CDJZR325520)Key Program for International Science and Technology Cooperation of Ministry of Science and Technology of China (No. 2016YFE0125900)Hundred Talents Program at Chongqing University
文摘Over the past decades, a series of aqueous rechargeable batteries(ARBs) were explored, investigated and demonstrated. Among them,aqueous rechargeable alkali-metal ion(Li^+Na^+, K^+) batteries, aqueous rechargeable-metal ion(Zn^(2+),Mg^(2+), Ca^(2+), Al^(3+)) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.
基金supported by the National Natural Science Foundation of China(52271222,51902301 and 22379096)the Natural Science Foundation of Zhejiang Province(LY21E020006)Shanghai Science and Technology Commission(21010503100 and 23DZ1202500)。
文摘由于缺乏先进的固体电解质界面相,水系锌电池的循环寿命受到锌金属负极副反应和枝晶等问题的严重制约.本文介绍了一种由两性分子(APMs)电解液添加剂构建而成的自组装电极-电解质界面相(AEEI).作为一个示范,这里选取聚乙烯吡咯烷酮(PVP)用做APMs,因为它的羰基氧原子与芳香性的吡咯环共轭,从而具有较强的电子给体性质.X射线光电子能谱和傅里叶变换红外光谱分析表明,AEEI的形成和稳定是由APMs的羰基氧原子同时与锌金属和锌离子相互作用推动的.所形成的AEEI主要由富含锌离子的APMs致密层状胶束构成.在电解质中保持APMs的含量在临界聚集浓度(~0.1%)以上,可以保证AEEI的固有稳定性,避免裂纹形成或脱落等问题.得益于其抑制水分解副反应和不利的二维锌扩散的能力,在AEEI的作用下实现了无枝晶的锌沉积.在1 M Zn(OTf)_(2)添加1%PVP的电解液中,形成的AEEI保证了锌对称电池具有超过2000小时的长循环寿命,Zn||Ti电池500个循环后库仑效率高于99.2%,以及V_(2)O_(5)||Zn全电池500个循环后容量的高保持率(达76%).