期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
变精度多粒度粗糙集近似集更新的矩阵算法 被引量:2
1
作者 郑文彬 李进金 +1 位作者 于佩秋 林艺东 《计算机应用》 CSCD 北大核心 2019年第11期3140-3145,共6页
随着信息大爆炸时代的到来,数据集的巨大化和数据集结构的复杂化已经成为近似计算中不能忽视的问题,而动态计算是解决这些问题的一种行之有效的途径。对现有的应用于经典多粒度粗糙集动态近似集更新方法进行了改进,提出了应用于变精度... 随着信息大爆炸时代的到来,数据集的巨大化和数据集结构的复杂化已经成为近似计算中不能忽视的问题,而动态计算是解决这些问题的一种行之有效的途径。对现有的应用于经典多粒度粗糙集动态近似集更新方法进行了改进,提出了应用于变精度多粒度粗糙集(VPMGRS)的向量矩阵近似集计算与更新方法。首先,提出了一种基于向量矩阵的VPMGRS近似集静态计算算法;其次,重新考虑了VPMGRS近似集更新时的搜索区域,并根据VPMGRS的性质缩小了该区域,有效地提升了近似集更新算法的时间效率;再次,根据新的搜索区域,在VPMGRS近似集静态计算算法的基础上提出了一种新的VPMGRS近似集更新的向量矩阵算法;最后,通过实验验证了所提算法的有效性。 展开更多
关键词 动态计算 近似集更新 变精度多粒度粗糙集 矩阵算法
下载PDF
基于非近似求导过程的加更新和乘更新分类算法 被引量:1
2
作者 刘建伟 李双成 罗雄麟 《计算机学报》 EI CSCD 北大核心 2013年第2期327-340,共14页
自从Kivinen和Warmuth提出权衡正确性与保守性的在线学习框架后,此在线学习框架已被广泛引用.但是在Kivinen和Warmuth提出的梯度下降和指数梯度下降算法中,对目标函数中的损失函数求导过程中使用近似步骤会引起在线学习结果恶化.文中,... 自从Kivinen和Warmuth提出权衡正确性与保守性的在线学习框架后,此在线学习框架已被广泛引用.但是在Kivinen和Warmuth提出的梯度下降和指数梯度下降算法中,对目标函数中的损失函数求导过程中使用近似步骤会引起在线学习结果恶化.文中,运用对偶最优化理论,提出了非近似的基于平方距离相关熵损失函数分类算法和基于相关熵距离相关熵损失函数分类算法,通过4种不同维数的真实数据集的实验研究,验证了提出算法的分类预测性能. 展开更多
关键词 最优化对偶理论 非近似更新 在线学习 相关熵度量 相关熵损失
下载PDF
基于正则化的乘更新在线分类算法
3
作者 刘建伟 李双成 罗雄麟 《计算机工程与应用》 CSCD 2012年第26期53-59,共7页
大样本集上在线预测算法时间空间复杂度小、预测准确性高,与批处理学习算法相比,有明显的优势。自从Jivinen和M.Warmuth提出权衡正确性与保守性的在线学习框架后,在线学习框架已被广泛引用。但是在Jivinen和M.Warmuth提出的梯度下降和... 大样本集上在线预测算法时间空间复杂度小、预测准确性高,与批处理学习算法相比,有明显的优势。自从Jivinen和M.Warmuth提出权衡正确性与保守性的在线学习框架后,在线学习框架已被广泛引用。但是在Jivinen和M.Warmuth提出的梯度下降和指数梯度下降算法中,对目标函数中的损失函数求导过程中使用近似步骤会引起在线学习结果恶化。运用对偶最优化理论,提出了非近似的基于不同距离和损失函数的乘更新分类算法,一系列的实验显示算法提高了预测准确率。 展开更多
关键词 最优化对偶理论 非近似更新 在线学习 乘权更新
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部