A new ZrSiO4@TiO2 hybrid nanostructure was prepared by a heterogeneous flocculation method. Phytic acid was introduced to modify the surface charging of the components for hybrid assembly. The obtained powder was coat...A new ZrSiO4@TiO2 hybrid nanostructure was prepared by a heterogeneous flocculation method. Phytic acid was introduced to modify the surface charging of the components for hybrid assembly. The obtained powder was coated on ceramic tiles and fired at 900 ℃ to fabricate photocatalytic ceramic. Experimental results show that anatase TiO2 in the composite powder has high thermal stability until 1 200 ℃. ZrSiO4 matrix prevents the mass transfer of anatase TiO2 at high temperature and greatly retards the phase transition of anatase to rutile. Besides, the photocatalytic ceramic shows apparent activities for the degradation of methyl orange under ultra-violet irradiation.展开更多
基金Funded by the Guangdong Provincial Science and technology project(2010A090200040)the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(LYM10017)
文摘A new ZrSiO4@TiO2 hybrid nanostructure was prepared by a heterogeneous flocculation method. Phytic acid was introduced to modify the surface charging of the components for hybrid assembly. The obtained powder was coated on ceramic tiles and fired at 900 ℃ to fabricate photocatalytic ceramic. Experimental results show that anatase TiO2 in the composite powder has high thermal stability until 1 200 ℃. ZrSiO4 matrix prevents the mass transfer of anatase TiO2 at high temperature and greatly retards the phase transition of anatase to rutile. Besides, the photocatalytic ceramic shows apparent activities for the degradation of methyl orange under ultra-violet irradiation.